首页> 外文期刊>Journal of neural engineering >Decoding working memory task condition using magnetoencephalography source level long-range phase coupling patterns
【24h】

Decoding working memory task condition using magnetoencephalography source level long-range phase coupling patterns

机译:使用磁性脑源电平远程相位耦合图案进行解码工作存储器任务条件

获取原文
获取原文并翻译 | 示例
           

摘要

Objective. The objective of the study is to identify phase coupling patterns that are shared acrosssubjects via a machine learning approach that utilises source space magnetoencephalography(MEG) phase coupling data from a working memory (WM) task. Indeed, phase coupling of neuraloscillations is putatively a key factor for communication between distant brain areas and istherefore crucial in performing cognitive tasks, including WM. Previous studies investigating phasecoupling during cognitive tasks have often focused on a few a priori selected brain areas or aspecific frequency band, and the need for data-driven approaches has been recognised. Machinelearning techniques have emerged as valuable tools for the analysis of neuroimaging data since theycatch fine-grained differences in the multivariate signal distribution. Here, we expect that thesetechniques applied to MEG phase couplings can reveal WM-related processes that are shared acrossindividuals. Approach. We analysed WM data collected as part of the Human Connectome Project.The MEG data were collected while subjects (n = 83) performed N-back WM tasks in two differentconditions, namely 2-back (WM condition) and 0-back (control condition). We estimated phasecoupling patterns (multivariate phase slope index) for both conditions and for theta, alpha, beta,and gamma bands. The obtained phase coupling data were then used to train a linear supportvector machine in order to classify which task condition the subject was performing with anacross-subject cross-validation approach. The classification was performed separately based on thedata from individual frequency bands and with all bands combined (multiband). Finally, weevaluated the relative importance of the different features (phase couplings) for classification by themeans of feature selection probability. Main results. The WM condition and control condition weresuccessfully classified based on the phase coupling patterns in the theta (62% accuracy) and alphabands (60% accuracy) separately. Importantly, the multiband classification showed that phasecoupling patterns not only in the theta and alpha but also in the gamma bands are related to WMprocessing, as testified by improvement in classification performance (71%). Significance. Ourstudy successfully decoded WM tasks using MEG source space functional connectivity. Ourapproach, combining across-subject classification and a multidimensional metric recentlydeveloped by our group, is able to detect patterns of connectivity that are shared across individuals.In other words, the results are generalisable to new individuals and allow meaningful interpretationof task-relevant phase coupling patterns.
机译:客观的。该研究的目的是识别分享的相位耦合模式通过一种机器学习方法,利用源空间磁力脑图(MEG)来自工作存储器(WM)任务的相位耦合数据。实际上,神经的相位耦合振荡是遥远脑区之间通信的关键因素,并且是因此,在执行认知任务中至关重要,包括WM。以前的研究调查阶段认知任务期间的耦合通常集中在一些优选的脑区域或a已经识别特定频带,并且已经识别了对数据驱动方法的需求。机器学习技术已成为自我分析神经影像数据的有价值的工具在多变量信号分布中捕获细粒度差异。在这里,我们期待这些应用于MEG相位耦合的技术可以揭示与之共享的WM相关过程个人。方法。我们分析了作为人类连接项目的一部分收集的WM数据。在两个不同的对象(n = 83)时收集MEG数据,而两个不同的WM任务条件,即2返回(WM条件)和0背(控制条件)。我们估计阶段条件和θ,α,beta的偶联模式(多变量相位斜率指数),和伽玛乐队。然后使用获得的相位耦合数据训练线性支撑件矢量机器为了分类主题的任务条件是用的跨对象交叉验证方法。分类是基于的单独执行的来自各个频带的数据和所有频段组合(多频带)。最后,我们评估不同特征(相位耦合)的相对重要性特征选择概率的手段。主要结果。 WM条件和控制条件是基于θ中的相位耦合模式(62%精度)和alpha成功分类频段(60%的准确性)分别。重要的是,多频带分类显示该阶段耦合模式不仅在θ和alpha中,而且还在伽马带中与wm有关处理,通过改善分类性能(71%)而作证。意义。我们的使用MEG源空间功能连接成功解码了WM任务。我们的方法,结合跨对象分类和最近的多维度量由我们的小组开发,能够检测到各个人的连接模式。换句话说,结果对新个人普遍并允许有意义的解释任务相关相耦合模式。

著录项

  • 来源
    《Journal of neural engineering》 |2021年第1期|016027.1-016027.16|共16页
  • 作者单位

    Department of Neuroscience Imaging and Clinical Sciences ‘Gabriele d’Annunzio’ University of Chieti-Pescara Chieti 66013 Italy;

    Department of Neuroscience Imaging and Clinical Sciences ‘Gabriele d’Annunzio’ University of Chieti-Pescara Chieti 66013 Italy;

    Department of Neuroscience Imaging and Clinical Sciences ‘Gabriele d’Annunzio’ University of Chieti-Pescara Chieti 66013 Italy;

    Department of Neuroscience Imaging and Clinical Sciences ‘Gabriele d’Annunzio’ University of Chieti-Pescara Chieti 66013 Italy Institute for Advanced Biomedical Technologies ‘Gabriele d’Annunzio’ University of Chieti-Pescara Chieti 66013 Italy;

    Department of Neuroscience Imaging and Clinical Sciences ‘Gabriele d’Annunzio’ University of Chieti-Pescara Chieti 66013 Italy Institute for Advanced Biomedical Technologies ‘Gabriele d’Annunzio’ University of Chieti-Pescara Chieti 66013 Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    working memory; magnetoencephalography; phase coupling; machine learning; neural oscillation;

    机译:工作记忆;磁性脑图;相位耦合;机器学习;神经振荡;

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号