...
首页> 外文期刊>Journal of neural engineering >Frequency-dependent antidromic activation in thalamocortical relay neurons: effects of synaptic inputs
【24h】

Frequency-dependent antidromic activation in thalamocortical relay neurons: effects of synaptic inputs

机译:丘脑皮质中继神经元中的频率依赖性抗drodromic激活:突触输入的影响。

获取原文
获取原文并翻译 | 示例
           

摘要

Objective. Deep brain stimulation (DBS) generates action potentials (APs) in presynaptic axons and fibers of passage. The APs may be antidromically propagated to invade the cell body and/or orthodromically transmitted to downstream structures, thereby affecting widespread targets distant from the electrode. Activation of presynaptic terminals also causes trans-synaptic effects, which in turn alter the excitability of the post-synaptic neurons. Our aim was to determine how synaptic inputs affect the antidromic invasion of the cell body. Approach. We used a biophysically-based multi-compartment model to simulate antidromic APs in thalamocortical relay (TC) neurons. We applied distributed synaptic inputs to the model and quantified how excitatory and inhibitory inputs contributed to the fidelity of antidromic activation over a range of antidromic frequencies. Main results. Antidromic activation exhibited strong frequency dependence, which arose from the hyperpolarizing afterpotentials in the cell body and its respective recovery cycle. Low-frequency axonal spikes faithfully invaded the soma, whereas frequent failures of antidromic activation occurred at high frequencies. The frequency-dependent pattern of the antidromic activation masked burst-driver inputs to TC neurons from the cerebellum in a frequency-dependent manner. Antidromic activation also depended on the excitability of the cell body. Excitatory synaptic inputs improved the fidelity of antidromic activation by increasing the excitability, and inhibitory inputs suppressed antidromic activation by reducing soma excitability. Stimulus-induced depolarization of neuronal segments also facilitated antidromic propagation and activation. Significance. The results reveal that synaptic inputs, stimulus frequency, and electrode position regulate antidromic activation of the cell body during extracellular stimulation. These findings provide a biophysical basis for interpreting the widespread inhibition/activation of target nuclei during DBS.
机译:目的。深度脑刺激(DBS)在突触前轴突和通道纤维中产生动作电位(AP)。可以将AP逆向传播以侵入细胞体和/或正交传输至下游结构,从而影响远离电极的广泛靶标。突触前末端的激活也引起跨突触效应,继而改变突触后神经元的兴奋性。我们的目的是确定突触输入如何影响细胞体的抗drodromic入侵。方法。我们使用了基于生物物理的多隔间模型来模拟丘脑皮层中枢(TC)神经元中的抗AP。我们对模型应用了分布式突触输入,并量化了兴奋性和抑制性输入如何在一定范围的反律频率上促进反证激活的保真度。主要结果。 Antidromic激活表现出强烈的频率依赖性,这是由于细胞体内的超极化后电位及其各自的恢复周期引起的。低频轴突尖峰忠实地侵入了躯体,而高频反抗激活频繁发生。反激激活的频率依赖性模式以频率依赖性方式掩盖了从小脑到TC神经元的猝发驱动器输入。抗drodromic激活还取决于细胞体的兴奋性。兴奋性突触输入通过增加兴奋性而提高了抗皮肤激活的保真度,而抑制性输入则通过降低躯体兴奋性来抑制抗皮肤激活。刺激引起的神经元节段的去极化也促进了反皮肤的传播和激活。意义。结果表明,突触输入,刺激频率和电极位置调节细胞外刺激过程中细胞体的抗线激活。这些发现为解释DBS期间靶核的广泛抑制/激活提供了生物物理基础。

著录项

  • 来源
    《Journal of neural engineering》 |2018年第5期|056001.1-056001.16|共16页
  • 作者

    Guosheng Yi; Warren M Grill;

  • 作者单位

    Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States of America,School of Electrical and Information Engineering, Tianjin University, Tianjin, People's Republic of China;

    Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States of America,Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States of America,Department of Neurobiology, School of Medicine, Duke University, Durham, NC, United States of America,Department of Neurosurgery, School of Medicine, Duke University, Durham, NC, United States of America;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    deep brain stimulation; thalamus; computational model;

    机译:脑深部刺激;丘脑;计算模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号