...
首页> 外文期刊>Journal of neural engineering >Large-scale dynamic modeling of task-fMRI signals via subspace system identification
【24h】

Large-scale dynamic modeling of task-fMRI signals via subspace system identification

机译:通过子空间系统识别对任务功能磁共振成像信号进行大规模动态建模

获取原文
获取原文并翻译 | 示例
           

摘要

Objective. We analyze task-based fMRI time series to produce large-scale dynamical models that are capable of approximating the observed signal with good accuracy. Approach. We extend subspace system identification methods for deterministic and stochastic state-space models with external inputs. The dynamic behavior of the generated models is characterized using control-theoretic analysis tools. To validate their effectiveness, we perform a probabilistic inversion of the identified input-output relationships via joint state-input maximum likelihood estimation. Our experimental setup explores a large dataset generated using state-of-the-art acquisition and pre-processing methods from the Human Connectome Project. Main results. We analyze both anatomically parcellated and spatially dense time series, and propose an efficient algorithm to address the high-dimensional optimization problem resulting from the latter. Our results enable the quantification of input-output transfer functions between each task condition and each region of the cortex, as exemplified by a motor task. Further, the identified models produce impulse response functions between task conditions and cortical regions that are compatible with typical hemodynamic response functions. We then extend subspace methods to account for multi-subject experimental configurations, identifying models that capture common dynamical characteristics across subjects. Finally, we show that system inversion via maximum-likelihood allows the time-of-occurrence of the task stimuli to be estimated from the observed outputs. Significance. The ability to produce dynamical input-output models might have an impact in the expanding field of neurofeedback. In particular, the models we produce allow the partial quantification of the effect of external task-related inputs on the metabolic response of the brain, conditioned on its current state. Such a notion provides a basis for leveraging control-theoretic approaches to neuromodulation and self-regulation in therapeutic applications.
机译:目的。我们分析基于任务的功能磁共振成像时间序列,以产生大规模的动力学模型,该模型能够以良好的精度逼近观察到的信号。方法。我们扩展了具有外部输入的确定性和随机状态空间模型的子空间系统识别方法。使用控制理论分析工具来表征所生成模型的动态行为。为了验证其有效性,我们通过联合状态输入最大似然估计对所确定的输入输出关系进行概率倒置。我们的实验装置探索了一个庞大的数据集,该数据集是使用来自人类Connectome项目的最新采集和预处理方法生成的。主要结果。我们分析了解剖上的离散时间序列和空间密集的时间序列,并提出了一种有效的算法来解决由后者导致的高维优化问题。我们的结果使得能够量化每个任务条件与皮质每个区域之间的输入输出传递函数,如运动任务所示。此外,所识别的模型在任务条件和皮质区域之间产生与典型的血液动力响应函数兼容的脉冲响应函数。然后,我们扩展子空间方法以解决多主体实验配置问题,并确定可捕获跨主体共同动力学特征的模型。最后,我们证明了通过最大似然法进行系统求逆可以从观察到的输出中估计任务刺激的发生时间。意义。产生动态输入输出模型的能力可能会对神经反馈领域的发展产生影响。特别是,我们生成的模型可以根据当前状态,部分量化与外部任务相关的输入对大脑代谢反应的影响。这种概念为在治疗应用中利用控制理论方法调节神经调节和自我调节提供了基础。

著录项

  • 来源
    《Journal of neural engineering》 |2018年第6期|066016.1-066016.17|共17页
  • 作者单位

    Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States of America;

    Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States of America,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States of America,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America,Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, United States of America;

    Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States of America;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    dynamical systems; task fmri; control theory; subspace system identification;

    机译:动力系统;任务fmri;控制理论子空间系统识别;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号