首页> 外文期刊>Journal of Molecular Modeling >Methane storage in homogeneous armchair open-ended single-walled boron nitride nanotube triangular arrays: a grand canonical Monte Carlo simulation study
【24h】

Methane storage in homogeneous armchair open-ended single-walled boron nitride nanotube triangular arrays: a grand canonical Monte Carlo simulation study

机译:均相扶手椅开放式单壁氮化硼纳米管三角形阵列中的甲烷存储:大型经典蒙特卡洛模拟研究

获取原文
获取原文并翻译 | 示例
           

摘要

The physisorption of methane in homogeneous armchair open-ended SWBNNT triangular arrays was evaluated using grand canonical ensemble Monte Carlo simulation for tubes 11.08, 13.85, 16.62, and 19.41 Å [(8,8), (10,10), (12,12), and (14,14), respectively] in diameter, at temperatures of 273, 298, 323, and 373 K, and at fugacities of 0.5–9.0 Mpa. The intermolecular forces were modeled using the Lennard–Jones potential model. The absolute, excess, and delivery adsorption isotherms of methane were calculated for the various boron nitride nanotube arrays. The specific surface areas and the isosteric heats of adsorption, Q st, were also studied, different isotherm models were fitted to the simulated adsorption data, and the model parameters were correlated. According to the results, it is possible to reach 108% and 140% of the US Department of Energy’s target for CH4 storage (180 v/v at 298 K and 35 bar) using the SWBNNT array with nanotubes 16.62 and 19.41 Å in diameter, respectively, as adsorbent. The results show that for a van der Waals gap of 3.4 Å, there is no interstitial adsorption except for arrays containing nanotubes with diameters of >15.8 Å. Multilayer adsorption starts to occur in arrays containing nanotubes with diameters of >16.62 Å, and the minimum pressure required for multilayer adsorption is 1.0 MPa. A brief comparison of the methane adsorption capacities of single-walled carbon and boron nitride nanotube arrays was also performed.
机译:甲烷在均质扶手椅开放式SWBNNT三角阵列中的甲烷物理吸附量通过对管11.08、13.85、16.62和19.41Å[(8,8),(10,10),(12,12)的大正则整体蒙特卡罗模拟进行了评估)和(14,14)的直径,温度分别为273、298、323和373 K,逸度为0.5-9.0 Mpa。使用伦纳德-琼斯势能模型对分子间力进行建模。对于各种氮化硼纳米管阵列,计算了甲烷的绝对,过量和传递吸附等温线。还研究了比表面积和等规吸附热Q st ,将不同的等温线模型拟合到模拟的吸附数据中,并关联了模型参数。根据结果​​,使用SWBNNT阵列将CH 4 存储(在298 K和35 bar下为180 v / v)存储在CH 4 上,可以达到美国能源部目标的108%和140%。直径分别为16.62和19.41Å的纳米管作为吸附剂。结果表明,范德华间隙为3.4Å时,除了包含直径大于15.8Å的纳米管的阵列以外,没有间隙吸附。在包含直径> 16.62Å的纳米管的阵列中开始发生多层吸附,并且多层吸附所需的最小压力为1.0 MPa。还对单壁碳纳米管和氮化硼纳米管阵列的甲烷吸附容量进行了简要比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号