...
首页> 外文期刊>Journal of Materials Science >Morphological and biological characterization of density engineered foams fabricated by ultrasonic sonication
【24h】

Morphological and biological characterization of density engineered foams fabricated by ultrasonic sonication

机译:超声超声处理致密工程泡沫的形态和生物学特征

获取原文
获取原文并翻译 | 示例

摘要

The successful manufacture of functionally tailored materials (e.g., density engineered foams) for advanced applications (e.g., structures or in bioengineering) requires an effective control over the process variables. In order to achieve this, density gradation needs to be represented and quantified. Current density measurement techniques offer information on bulk values, but neglect local position as valuable information (i.e., do not associate density scalar values with specific location, which is frequently critical when mechanical properties or functionalities have to be engineered). In this article, we present a method that characterizes the density gradation of engineered foams manufactured by the sonication technique, which allows the generation of sophisticated porous architectures beyond a simple linear gradient. A 3D data capture (μCT) and a flexible analysis software program (ImageJ) are used to obtain “global” density gradation values that can, ultimately, inform, control, and optimize the manufacture process. Polymeric foams, i.e., polyurethane (PU) foams, were used in this study as proof of concept. The measurements performed on the PU foams were validated by checking consistency in the results for both horizontal and vertical image slices. Biological characterization was done to assess the samples’ tailored structure viability as scaffolds for tissue engineering. The comparison between untreated and sonicated samples yielded a 12.7% of increment in living cell count adhered to the walls after treatment. The conclusions drawn from this study may inform the design and manufacture of density-engineered materials used in other fields (e.g., structural materials, optoelectronics, food technology, etc.)
机译:成功制造用于高级应用(例如结构或生物工程)的功能定制材料(例如密度工程泡沫)需要对过程变量进行有效控制。为了实现这一点,需要对密度等级进行表示和量化。当前的密度测量技术提供了有关体积值的信息,但是忽略了作为有价值信息的局部位置(即,不将密度标量值与特定位置相关联,这在必须设计机械性能或功能时通常很关键)。在本文中,我们提出了一种表征通过超声处理技术制造的工程泡沫的密度等级的方法,该方法允许生成超出简单线性梯度的复杂多孔结构。使用3D数据捕获(μCT)和灵活的分析软件程序(ImageJ)获得“全局”密度等级值,这些值最终可以通知,控制和优化制造过程。在这项研究中,使用了聚合物泡沫,即聚氨酯(PU)泡沫作为概念证明。通过检查水平和垂直图像切片结果的一致性来验证对PU泡沫进行的测量。进行了生物学表征,以评估样品作为组织工程支架的定制结构活力。未经处理和超声处理的样品之间的比较显示,处理后粘附在壁上的活细胞数量增加了12.7%。这项研究得出的结论可能会为其他领域(例如结构材料,光电,食品技术等)中使用的密度工程材料的设计和制造提供参考。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号