首页> 外文期刊>Journal of Materials Science >High strain rate behavior, transformation-induced plasticity and fracture toughness characterization of cast and additionally tempered Fe85Cr4Mo8V2C1 alloy manufactured using a rapid solidification technique
【24h】

High strain rate behavior, transformation-induced plasticity and fracture toughness characterization of cast and additionally tempered Fe85Cr4Mo8V2C1 alloy manufactured using a rapid solidification technique

机译:使用快速凝固技术制造的铸造及回火后的Fe85Cr4Mo8V2C1合金的高应变速率行为,相变诱发塑性和断裂韧性表征

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This study focuses on the characterization of the microstructures of an FeCrMoVC alloy in two states (an as-cast and a heat-treated state) as well as the compressive strain rate-dependent material and fracture toughness behavior. Both microstructures consist of martensite, retained austenite and complex carbides. Tempering results in a transformation of retained austenite into martensite, the precipitation of fine alloy carbides, and diffusion processes. High yield stresses, flow and ultimate compressive strength values at a relatively good deformability were measured. The yield and flow stresses at the onset of deformation are higher for the heat-treated state due to higher martensitic phase fractions and fine precipitations of alloy carbides respectively. Compressive deformation causes a strain-induced transformation of retained austenite to α′-martensite. Hence, both high-strength alloys are TRIP-assisted steels (TRansformation-Induced Plasticity). However, the martensitic transformation is more pronounced in the as-cast state due to higher phase fractions of retained austenite already in the initial state. Examinations of strained microstructures showed decreased crystallite sizes with increasing deformation. It is assumed that, during plastic deformation, the amount of low angle grain boundaries increases while the incremental formation of α′-martensite leads to decreased crystallite size. In general, lower microstrains were determined in the heat-treated state as a consequence of stress relaxation during tempering. In comparison to commercially available tool steels, the determined fracture toughness K Ic of both variants revealed relatively high fracture toughness values. It was found that the lower shelf of K Ic is already reached at room temperature. Higher loading rates $ dot{K} $ resulted in lower dynamic fracture toughness K Id values. Notch fracture toughness K A measurements indicate that the critical notch tip radii of the examined materials are slightly smaller than 0.09 mm.
机译:这项研究的重点是表征两种状态(铸态和热处理态)的FeCrMoVC合金的微观结构,以及与压缩应变率有关的材料和断裂韧性行为。两种微观结构均由马氏体,残余奥氏体和复合碳化物组成。回火会导致残余奥氏体转变为马氏体,细合金碳化物析出并扩散。测量了在相对良好的变形性下的高屈服应力,流动和极限抗压强度值。热处理状态下,变形开始时的屈服应力和流变应力较高,这分别是由于较高的马氏体相分数和合金碳化物的细小析出。压缩变形导致残余奥氏体由应变引起的转变为α'-马氏体。因此,两种高强度合金都是TRIP辅助钢(变形诱导塑性)。但是,由于已处于初始状态的残余奥氏体的相分数较高,因此在铸态下马氏体相变更为明显。应变微结构的检查表明,随着变形的增加,晶粒尺寸减小。假定在塑性变形期间,低角度晶界的数量增加,而α'-马氏体的逐渐形成导致晶粒尺寸减小。通常,由于回火过程中应力松弛,在热处理状态下确定了较低的微应变。与可购得的工具钢相比,两种变型的确定的断裂韧性K Ic 都显示出较高的断裂韧性值。发现在室温下已经达到了K Ic 的下层架子。较高的加载速率$ dot {K} $导致较低的动态断裂韧性K Id 值。缺口断裂韧性K A 测量表明,所检查材料的临界缺口尖端半径略小于0.09 mm。

著录项

  • 来源
    《Journal of Materials Science》 |2012年第19期|p.6915-6928|共14页
  • 作者单位

    Faculty of Materials Science and Technology, Institute of Materials Engineering, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 5, 09599, Freiberg, Germany;

    Faculty of Materials Science and Technology, Institute of Materials Science, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 5, 09599, Freiberg, Germany;

    Faculty of Materials Science and Technology, Institute of Materials Engineering, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 5, 09599, Freiberg, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号