...
首页> 外文期刊>Journal of materials science >Tunneling currents through ultra thin HfO_2/Al_2O_3/HfO_2 triple layer gate dielectrics for advanced MIS devices
【24h】

Tunneling currents through ultra thin HfO_2/Al_2O_3/HfO_2 triple layer gate dielectrics for advanced MIS devices

机译:通过超薄HfO_2 / Al_2O_3 / HfO_2三层栅极电介质的隧道电流,用于高级MIS器件

获取原文
获取原文并翻译 | 示例

摘要

The dramatic scaling down of silicon integrated circuits has led to an intensive study of high dielectric constant materials as an alternative to the conventional insulators currently employed in microelectronics, i.e., silicon dioxide, silicon nitride, or oxynitride, which seem to have reached their physical limit in terms of reduction of thickness due to large leakage gate current. Introducing a physically thicker high-K material can reduce the leakage current to the acceptable limit. There are many potential candidates for high-K gate dielectrics with the K-valves ranging from 9 to 80. These are Al_2O_3, Y_2O_3, La_2O_3, Ta_2O_5, TiO_2, ZrO_2 and HfO_2. It is important to study the various leakage mechanisms in these films with the aim of improving their leakage current characteristics for use in advanced microelectronics devices. A procedure for calculating the tunneling current for stacked dielectrics is developed and subsequently applied to ultra thin films with equivalent oxide thickness (EOT) of 3.0 nm. Tunneling currents have been calculated as a function of gate voltage for different structures. Direct and Fowler-Nordheim tunneling currents through triple layer dielectrics are investigated for substrate injection. Using exact tunneling transmission calculations, current density-gate voltage (J_g-V_g) characteristics for ultra thin single layer gate dielectrics with different thicknesses have been shown to agree well with recently reported experiments. Extensions of this approach demonstrate that tunneling currents in HfO_2/Al_2O_3/HfO_2 structure with equivalent oxide thickness of 3.0 nm can be significantly lower than that through single layer oxides of the same thickness.
机译:硅集成电路的大规模缩小导致人们对高介电常数材料进行了深入研究,以替代目前微电子学中使用的常规绝缘体,即似乎已达到其物理极限的二氧化硅,氮化硅或氧氮化物。由于大的漏栅电流导致的厚度减小。引入物理上较厚的高K材料可以将泄漏电流降低到可接受的极限。高K栅介质的K阀范围从9到80,有很多潜在的候选物。它们是Al_2O_3,Y_2O_3,La_2O_3,Ta_2O_5,TiO_2,ZrO_2和HfO_2。重要的是研究这些薄膜中的各种泄漏机理,以改善其在先进微电子器件中的泄漏电流特性。开发了用于计算堆叠电介质的隧穿电流的程序,然后将该程序应用于等效氧化物厚度(EOT)为3.0 nm的超薄膜。已经针对不同结构计算了隧道电流作为栅极电压的函数。通过三层电介质的直流和Fowler-Nordheim隧穿电流被研究用于衬底注入。使用精确的隧道传输计算,已证明具有不同厚度的超薄单层栅极电介质的电流密度-栅极电压(J_g-V_g)特性与最近报道的实验非常吻合。该方法的扩展表明,当HfO_2 / Al_2O_3 / HfO_2结构中的等效氧化物厚度为3.0 nm时,隧穿电流可以显着低于相同厚度的单层氧化物的隧穿电流。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号