...
首页> 外文期刊>Journal of materials science >Effect of Ho, Mn co-doping on the structural, optical and ferroelectric properties of BiFeO_3 nanoparticles
【24h】

Effect of Ho, Mn co-doping on the structural, optical and ferroelectric properties of BiFeO_3 nanoparticles

机译:Ho,Mn共掺杂对BiFeO_3纳米粒子结构,光学和铁电性能的影响

获取原文
获取原文并翻译 | 示例

摘要

Multiferroic Bi_(1-x)Ho_xFe_(0.95)Mn_(0.05)O_3 (x = 0.025, 0.05, 0.075, 0.10 and 0.1) powder samples were successfully prepared by sol-gel technique. The effect of Ho, Mn co-doping on the properties of structural, electrical, optical and ferroelectric have been systematic investigated. X-ray diffraction (XRD) patterns reveal that Ho, Mn co-substitution leads to a structural transition. The scanning electron microscope (SEM) shows that the grains of all the samples are asymmetrical and anomalous in shape and the particle size of the samples decrease from 200 to 500 to ~100 nm with doping Ho and Mn in BFO. UV-Visible absorption spectra exhibit that co-doping can reduce the direct optical band gap from 2.40 to ~1.77 eV after doping Ho and Mn. Electric measurements demonstrate that both of the leakage current density and ferroelectric properties can be improved obviously by Ho and Mn co-doping as a result of the suppression of oxygen vacancies.
机译:通过溶胶-凝胶技术成功制备了多铁性Bi_(1-x)Ho_xFe_(0.95)Mn_(0.05)O_3(x = 0.025、0.05、0.075、0.10和0.1)粉末样品。系统地研究了Ho,Mn共掺杂对结构,电,光和铁电性能的影响。 X射线衍射(XRD)图谱显示Ho,Mn共取代导致结构转变。扫描电子显微镜(SEM)显示,在BFO中掺入Ho和Mn后,所有样品的晶粒均为不对称且形状异常,并且样品的粒径从200nm降低至500nm至〜100nm。紫外可见吸收光谱显示,共掺杂可以在掺杂Ho和Mn后将直接光学带隙从2.40 eV降低到〜1.77 eV。电学测量表明,通过抑制氧空位,Ho和Mn共掺杂可以显着改善漏电流密度和铁电性能。

著录项

  • 来源
    《Journal of materials science 》 |2017年第22期| 17283-17287| 共5页
  • 作者单位

    Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center For Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, People's Republic of China;

    Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center For Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, People's Republic of China;

    Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center For Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, People's Republic of China;

    Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center For Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, People's Republic of China;

    School of Science, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, People's Republic of China;

    Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center For Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, People's Republic of China,School of Science, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, People's Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号