...
首页> 外文期刊>Journal of materials science >Structures and interfaces of CNT: pyrolytic C coated Al foil and its performance as current collector of electrochemical double layer capacitor
【24h】

Structures and interfaces of CNT: pyrolytic C coated Al foil and its performance as current collector of electrochemical double layer capacitor

机译:碳纳米管:热解碳包覆铝箔的结构与界面及其作为电化学双层电容器集电器的性能

获取原文
获取原文并翻译 | 示例

摘要

Al foil with CNT—pyrolytic C composite layer of 300 nm (CNT-C/A1) has been prepared by coating Al foil with CNT and polymeric precursors and heating it in rolls at 585 ℃ in argon flow. By Raman analysis, both sp3 and sp2 mode carbon are formed in pyrolytic C produced in-situ in the coating, and has interacted with walls of CNTs. Well—combined interfaces of CNT with pyrolytic C and carbon coating with Al matrix are seen in CNT-C/ Al by scanning electron microscope and high resolution transmission electron microscopy. Metallurgical bonding of carbon layer and Al matrix is confirmed by X-ray Diffraction for generation of Al_4C_3 in CNT-C/Al. Interfacial resistances of Al foil with carbon coating are evaluated by resistances of "sample piece/PEDOT layer/sample piece" stacks, which is 12 ±2 mΩ for CNT-C/A1 and 44 ±2 mΩ for CNT-C/Al-control with generation of Al_4C_3 restrained. Researches on electrochemical double layer capacitor (EDLC) electrodes reveal that samples using etched Al foil (E-Al) as current collector present higher sheet resistances than CNT-C/Al. EDLCs using CNT-C/A1 as current collector show higher capacitances and lower resistances than those using E-Al, and the differences become bigger when current flow increases. Notably, EDLCs using CNT-C/Al prove outstanding stability in resistance during galvanostatic charge—discharge cycles at current of 4.0 A for 10,000 times and accelerate lifetime test at 85 ℃/2.85 V for 64 h, while the corresponding increase rates for EDLC using E-Al are 19.6% and 30% respectively.
机译:通过将CNT和聚合物前体涂在铝箔上,并在氩气中于585℃的辊中加热,制备出具有CNT- 300℃的热解碳复合层(CNT-C / A1)的铝箔。通过拉曼分析,sp3和sp2模式碳均在涂层中原位产生的热解碳中形成,并与CNT的壁相互作用。通过扫描电子显微镜和高分辨率透射电子显微镜在CNT-C / Al中观察到CNT与热解C的良好结合的界面和Al基碳涂层。碳层和Al基体的冶金结合通过X射线衍射确定,从而在CNT-C / Al中生成Al_4C_3。带有碳涂层的铝箔的界面电阻通过“样品/ PEDOT层/样品”叠层的电阻进行评估,对于CNT-C / A1,电阻为12±2mΩ,对于CNT-C / Al-control,电阻为44±2mΩ限制了Al_4C_3的生成。对电化学双层电容器(EDLC)电极的研究表明,使用蚀刻铝箔(E-Al)作为集电器的样品呈现出比CNT-C / Al高的薄层电阻。与使用E-Al的EDLC相比,使用CNT-C / A1的EDLC表现出更高的电容和更低的电阻,并且当电流增加时,差异会更大。值得注意的是,使用CNT-C / Al的EDLC在恒电流充电过程中表现出出色的电阻稳定性-在4.0 A电流下进行10,000次放电循环,并在85℃/ 2.85 V下加速寿命测试64 h,而使用EDLC的相应增加速率E-Al分别为19.6%和30%。

著录项

  • 来源
    《Journal of materials science 》 |2017年第20期| 15095-15105| 共11页
  • 作者单位

    School of Materials Science and Engineering, Central South University, No.932 South Lushan Road, Changsha 410083, Hunan, China;

    School of Materials Science and Engineering, Central South University, No.932 South Lushan Road, Changsha 410083, Hunan, China,Hunan Zhengyuan Institute for Energy Storage Materials and Devices, No.605 South Lushan Road, Changsha 410083, Hunan, China;

    Natong Jianghai Capacitor Co., Ltd, No.79 South Tongyang Road, Pingchao Town, Tongzhou District, Nantong 226361, Jiangsu, China;

    School of Materials Science and Engineering, Central South University, No.932 South Lushan Road, Changsha 410083, Hunan, China,Hunan Zhengyuan Institute for Energy Storage Materials and Devices, No.605 South Lushan Road, Changsha 410083, Hunan, China;

    Natong Jianghai Capacitor Co., Ltd, No.79 South Tongyang Road, Pingchao Town, Tongzhou District, Nantong 226361, Jiangsu, China;

    School of Materials Science and Engineering, Central South University, No.932 South Lushan Road, Changsha 410083, Hunan, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号