首页> 外文期刊>Journal of Materials Research >Instrumented nanoindentation investigation into the mechanical behavior of ceramics at moderately elevated temperatures
【24h】

Instrumented nanoindentation investigation into the mechanical behavior of ceramics at moderately elevated temperatures

机译:在中等温度下对陶瓷力学行为的仪器化纳米压痕研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

An analysis of indentation hardness data from three ceramic materials, zirconium diboride, silicon carbide, and titanium nitride, is presented to extract the fundamental deformation parameters at 295 to 623 K. The measured activation volume was of the order of 1×b~3 to 4× b~3 (b is the Burgers vector). The calculated activation energies were in the range of 0.75 to 1.61 eV and are typical of lattice-controlled dislocation glide mechanism. Using finite difference simulations, it was demonstrated that there is a significant difference between the plastic strain rate and the total strain rate for materials showing substantial elastic deformation (i.e., large hardness/elastic modulus ratio). Therefore, the measured total strain rates must be converted into plastic strain rates, which require a reduction during loading and an increase during the dwell at maximum load. Additionally, importance of quantification of instrumental thermal drift was discussed and use of either short duration indentation tests or high loads was emphasized.
机译:分析了三种陶瓷材料(二硼化锆,碳化硅和氮化钛)的压痕硬度数据,以提取295至623 K的基本变形参数。测得的活化体积约为1×b〜3至4×b〜3(b是Burgers向量)。计算的活化能在0.75至1.61 eV的范围内,是晶格控制位错滑移机制的典型特征。使用有限差分模拟表明,对于显示出较大弹性变形(即大的硬度/弹性模量比)的材料,塑性应变速率与总应变速率之间存在显着差异。因此,必须将测得的总应变率转换为塑性应变率,这要求在加载过程中减小载荷,在最大载荷下的保持过程中增大载荷。此外,讨论了仪器热漂移量化的重要性,并强调了短期压痕测试或高负荷的使用。

著录项

  • 来源
    《Journal of Materials Research》 |2012年第1期|p.65-75|共11页
  • 作者单位

    Centre for Advanced Structural Ceramics, Imperial College London, South Kensington Campus,London SW7 2AZ, United Kingdom Department of Materials, Imperial College London,South Kensington Campus, London SW7 2AZ, United Kingdom Department of Mechanical Engineering,Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom;

    Centre for Advanced Structural Ceramics, Imperial College London, South Kensington Campus,London SW7 2AZ, United Kingdom Department of Materials, Imperial College London,South Kensington Campus, London SW7 2AZ, United Kingdom;

    Centre for Advanced Structural Ceramics, Imperial College London, South Kensington Campus,London SW7 2AZ, United Kingdom Department of Materials, Imperial College London,South Kensington Campus, London SW7 2AZ, United Kingdom;

    Centre for Advanced Structural Ceramics, Imperial College London, South Kensington Campus,London SW7 2AZ, United Kingdom Department of Materials, Imperial College London,South Kensington Campus, London SW7 2AZ, United Kingdom;

    Centre for Advanced Structural Ceramics, Imperial College London, South Kensington Campus,London SW7 2AZ, United Kingdom Department of Materials, Imperial College London,South Kensington Campus, London SW7 2AZ, United Kingdom Department of Mechanical Engineering,Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom;

    Centre for Advanced Structural Ceramics, Imperial College London, South Kensington Campus,London SW7 2AZ, United Kingdom Department of Materials, Imperial College London,South Kensington Campus, London SW7 2AZ, United Kingdom;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号