...
首页> 外文期刊>Journal of Materials Research >Microstructural evolution and functional fatigue of a Ti-25Ta high-temperature shape memory alloy
【24h】

Microstructural evolution and functional fatigue of a Ti-25Ta high-temperature shape memory alloy

机译:Ti-25Ta高温形状记忆合金的组织演变和功能疲劳

获取原文
获取原文并翻译 | 示例

摘要

Titanium-tantalum based alloys can demonstrate a martensitic transformation well above 100 ℃, which makes them attractive for shape memory applications at elevated temperatures. In addition, they provide for good workability and contain only reasonably priced constituents. The current study presents results from functional fatigue experiments on a binary Ti-25Ta high-temperature shape memory alloy. This material shows a martensitic transformation at about 350 ℃ along with a transformation strain of 2 pct at a bias stress of 100 MPa. The success of most of the envisaged applications will, however, hinge on the microstructural stability under thermomechanical loading. Thus, light and electron optical microscopy as well X-ray diffraction were used to uncover the mechanisms that dominate functional degradation in different temperature regimes. It is demonstrated the maximum test temperature is the key parameter that governs functional degradation in the thermomechanical fatigue tests. Specifically, co-phase formation and local decomposition in Ti-rich and Ta-rich areas dominate when T_(max) does not exceed ≈430 ℃. As T_(max) is increased, the detrimental phases start to dissolve and functional fatigue can be suppressed. However, when T_(max) reaches ≈620 ℃, structural fatigue sets in, and fatigue life is again deteriorated by oxygen-induced crack formation.
机译:钛-钽基合金可在高于100℃的温度下表现出马氏体相变,这使其在高温下的形状记忆应用中具有吸引力。此外,它们提供了良好的可操作性,并且仅包含价格合理的成分。当前的研究提供了二元Ti-25Ta高温形状记忆合金的功能疲劳实验结果。该材料在约350℃时显示出马氏体相变,并在100 MPa的偏应力下显示出2 pct的相变应变。然而,大多数预期应用的成功将取决于热机械载荷下的微观结构稳定性。因此,使用光学和电子光学显微镜以及X射线衍射来揭示控制不同温度范围内功能退化的机理。结果表明,最高测试温度是控制热机械疲劳测试中功能退化的关键参数。具体来说,当T_(max)不超过≈430℃时,富钛和富钽区域中的同相形成和局部分解起主导作用。随着T_(max)增加,有害相开始溶解并且可以抑制功能疲劳。但是,当T_(max)达到≈620℃时,结构疲劳开始,疲劳寿命又因氧引起的裂纹形成而恶化。

著录项

  • 来源
    《Journal of Materials Research 》 |2017年第23期| 4287-4295| 共9页
  • 作者单位

    Institut fuer Werkstoffkunde (Materials Science), Leibniz Universitaet Hannover, Garbsen 30823, Germany;

    Institut fuer Werkstoffkunde (Materials Science), Leibniz Universitaet Hannover, Garbsen 30823, Germany;

    Institut fuer Werkstoffe, Ruhr-Universitaet Bochum, Bochum 44780, Germany;

    Institut fuer Werkstoffe, Ruhr-Universitaet Bochum, Bochum 44780, Germany;

    Institut fuer Werkstoffe, Ruhr-Universitaet Bochum, Bochum 44780, Germany;

    Institut fuer Werkstoffe, Ruhr-Universitaet Bochum, Bochum 44780, Germany;

    Institut fuer Werkstoffe, Ruhr-Universitaet Bochum, Bochum 44780, Germany;

    Institut fuer Werkstoffe, Ruhr-Universitaet Bochum, Bochum 44780, Germany;

    Institut fuer Werkstoffe, Ruhr-Universitaet Bochum, Bochum 44780, Germany;

    Institut fuer Werkstofftechnik, Universitaet Kassel, Kassel 34125, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号