...
首页> 外文期刊>Journal of Materials Research >NiS_x@MoS_2 heterostructure prepared by atomic layer deposition as high-performance hydrogen evolution reaction electrocatalysts in alkaline media
【24h】

NiS_x@MoS_2 heterostructure prepared by atomic layer deposition as high-performance hydrogen evolution reaction electrocatalysts in alkaline media

机译:NIS_X @ MOS_2通过原子层沉积制备的异质结构,作为碱性介质中的高性能氢气进化反应电催化剂

获取原文
获取原文并翻译 | 示例
           

摘要

Developing low-cost and high-performance hydrogen evolution reaction (HER) electrocatalysts is essential for the development of hydrogen energy. While transition metal sulfides are reported as promising HER electrocatalysts, their performance still requires further improvement for practical application. In this work, we report a strategy to construct NiS_x@MoS_2 heterostructures with a well-defined interface structure by growing NiS_x nanoclusters on MoS_2 nanosheets through atomic layer deposition (ALO). NiS_x@MoS_2 heterostructures exhibit strongly enhanced HER activity with lower overpotential and faster reaction dynamic compared to MoS_2 and NiS_x single phases. The enhanced performance is attributed to improved adsorption of the reaction intermediates and the facilitated charge transfer process near the MoS_2/NiS_x interfaces. Besides high activity, NiS_x@MoS_2 heterostructures also exhibit high stability in alkaline media. The methodology and knowledge in this work can guide the rational design of high-performance electrocatalysts through hetero-interface engineering.
机译:开发低成本和高性能氢气进化反应(她的)电催化剂对于氢能的发展至关重要。虽然据报道过渡金属硫化物作为其电催化剂承诺,但它们的性能仍然需要进一步改善实际应用。在这项工作中,我们通过通过原子层沉积(ALO)在MOS_2纳米片上生长NIS_X纳米能器来报告用明确定义的界面结构构建NIS_X @ MOS_2异质结构的策略。与MOS_2和NIS_X单相相比,NIS_X @ MOS_2异质结构表现出强烈增强的,其具有较低的过势和更快的反应动态。增强的性能归因于改善反应中间体的吸附和靠近MOS_2 / NIS_X界面附近的促进电荷转移过程。除了高活性外,NIS_X @ MOS_2异质结构还表现出碱性介质的高稳定性。本工作中的方法和知识可以通过异界工程指导高性能电催化剂的合理设计。

著录项

  • 来源
    《Journal of Materials Research》 |2020年第7期|822-830|共9页
  • 作者单位

    Guangzhou Key Laboratory for Surface Chemistry of Energy Materials Guangdong Engineering and Technology and Research Center for Surface Chemistry of Energy Materials State Key Laboratory of Pulp and Paper Engineering School of Environment and Energy South China University of Technology Guangzhou 510006 China;

    School of Advanced Materials Shenzhen Graduate School Peking University Shenzhen 518055 China;

    School of Advanced Materials Shenzhen Graduate School Peking University Shenzhen 518055 China;

    Guangzhou Key Laboratory for Surface Chemistry of Energy Materials Guangdong Engineering and Technology and Research Center for Surface Chemistry of Energy Materials State Key Laboratory of Pulp and Paper Engineering School of Environment and Energy South China University of Technology Guangzhou 510006 China Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China;

    School of Advanced Materials Shenzhen Graduate School Peking University Shenzhen 518055 China;

    Guangzhou Key Laboratory for Surface Chemistry of Energy Materials Guangdong Engineering and Technology and Research Center for Surface Chemistry of Energy Materials State Key Laboratory of Pulp and Paper Engineering School of Environment and Energy South China University of Technology Guangzhou 510006 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号