首页> 外文期刊>Journal of magnetism and magnetic materials >Enhanced magnetic domain relaxation frequency and low power losses in Zn~(2+) substituted manganese ferrites potential for high frequency applications
【24h】

Enhanced magnetic domain relaxation frequency and low power losses in Zn~(2+) substituted manganese ferrites potential for high frequency applications

机译:Zn〜(2+)取代锰铁氧体的增强磁畴弛豫频率和低功率损耗,可用于高频应用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Nowadays electronic industries prerequisites magnetic materials, i.e., iron rich materials and their magnetic alloys. However, with the advent of high frequency applications, the standard techniques of reducing eddy current losses, using iron cores, were no longer efficient or cost effective. Current market trends of the switched mode power supplies industries required even low energy losses in power conversion with maintenance of adequate initial permeability. From the above point of view, in the present study we aimed at the production of Manganese-Zinc ferrites prepared via solution combustion method using mixture of fuels and achieved low loss, high saturation magnetization, high permeability, and high magnetic domain relaxation frequency. The as-synthesized Zn~(2+) substituted MnFe_2O_4 were characterized by X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The fractions of Mn~(2+), Zn~(2+) and Fe~(2+) cations occupying tetrahedral sites along with Fe occupying octahedral sites within the unit cell of all ferrite samples were estimated by Raman scattering spectroscopy. The magnetic domain relaxation was investigated by inductance spectroscopy (IS) and the observed magnetic domain relaxation frequency (f_r) was increased with the increase in grain size. The real and imaginary part of permeability (μ' and μ") increased with frequency and showed a maximum above 100 MHz. This can be explained on the basis of spin rotation and domain wall motion. The saturation magnetization (M_s), remnant magnetization (M_r) and magneton number (μ_B) decreased gradually with increasing Zn~(2+) concentration. The decrease in the saturation magnetization was discussed with Yafet-Kittel (Y-K) model. The Zn~(2+) concentration increases the relative number of ferric ions on the A sites, reduces the A-B interactions. The frequency dependent total power losses decreased as the zinc concentration increased. At 1 MHz, the total power loss (P_t) changed from 358 mW/cm~3 for x=0-165 mW/cm~3 for x=0.9. P_r for all the Zn doped samples exhibited the temperature stability up to 100 ℃.
机译:如今,电子工业需要磁性材料,即富铁材料及其磁性合金。但是,随着高频应用的出现,使用铁芯减少涡流损耗的标准技术已不再有效或不合算。开关电源行业的当前市场趋势要求在保持足够的初始磁导率的同时,在功率转换中甚至要降低能量损耗。从以上观点出发,在本研究中,我们的目标是通过使用燃料混合物通过固溶燃烧方法制备锰锌铁氧体,并实现了低损耗,高饱和磁化强度,高磁导率和高磁畴弛豫频率。用X射线衍射仪(XRD)和透射电子显微镜(TEM)对合成后的Zn〜(2+)取代的MnFe_2O_4进行了表征。通过拉曼散射光谱法估计了所有铁素体样品的晶胞中占据四面体位点的Mn〜(2 +),Zn〜(2+)和Fe〜(2+)阳离子以及占Fe的八面体位点的分数。通过电感光谱法(IS)研究了磁畴弛豫,并且观察到的磁畴弛豫频率(f_r)随着晶粒尺寸的增加而增加。磁导率的实部和虚部(μ'和μ“)随频率增加,并且在100 MHz以上显示最大值。这可以根据自旋旋转和畴壁运动来解释。饱和磁化强度(M_s),剩余磁化强度( M_r)和磁子数(μ_B)随着Zn〜(2+)浓度的增加而逐渐减小,用Yafet-Kittel(YK)模型讨论了饱和磁化强度的减小,Zn〜(2+)浓度增加了Zn〜(2+)的相对数量。 A位上的铁离子减少了AB的相互作用,频率相关的总功率损耗随锌浓度的增加而降低,在1 MHz时,对于x = 0-165,总功率损耗(P_t)从358 mW / cm〜3变化x = 0.9时mW / cm〜3,所有Zn掺杂样品的P_r表现出高达100℃的温度稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号