...
首页> 外文期刊>Lightwave Technology, Journal of >Simulation of Self-Aligned Optical Coupling Between Micro- and Nano-Scale Devices Using Self-Organized Waveguides
【24h】

Simulation of Self-Aligned Optical Coupling Between Micro- and Nano-Scale Devices Using Self-Organized Waveguides

机译:使用自组织波导模拟微米级和纳米级设备之间的自对准光学耦合

获取原文
获取原文并翻译 | 示例
           

摘要

Using the finite-difference time-domain method, we simulated the growth of self-organized waveguides between a 3-μm-wide micro-scale waveguide and a 600-nm-wide nano-scale waveguide, which has a luminescent target on its core edge. The two waveguides are placed together, with gap sizes ranging from 16 to 64 μm, in a photo-induced refractive-index increase-type material. When a 400 nm wavelength write beam is introduced from the micro-scale waveguide, luminescence is generated by the luminescent target. A waveguide is then gradually self-organized between the two waveguides, even when a lateral misalignment of 600 nm exists between them, and provides a self-aligned optical coupling with a coupling loss of 1.5-1.8 dB. This indicates that the self-organized waveguide can be used as an optical solder to connect a micro-scale waveguide in a multi-chip module or printed circuit board to a nano-scale waveguide in a large-scale integrated circuit. The optimum writing time required to attain the minimum coupling loss increases with increasing lateral misalignment. The dependence of the optimum writing time on the misalignment is reduced with increasing gap distance, and the dependence almost vanishes when the gap distance is 64 μm, thus enabling unmonitored optical solder formation.
机译:使用时域有限差分法,我们模拟了自组织波导在3μm宽的微尺度波导和600nm宽的纳米尺度波导之间的生长,该波导的核心具有发光目标边缘。在光诱导的折射率增加型材料中,两个波导放置在一起,间隙尺寸在16到64μm之间。当从微型波导引入400 nm波长的写入光束时,发光目标产生发光。然后,即使两个波导之间存在600 nm的横向未对准,也可以在两个波导之间逐渐自组织一个波导,并以1.5-1.8 dB的耦合损耗提供自对准的光耦合。这表明自组织波导可以用作光学焊料,以将多芯片模块或印刷电路板中的微尺度波导连接到大规模集成电路中的纳米尺度波导。达到最小耦合损耗所需的最佳写入时间随横向未对准的增加而增加。最佳写入时间对未对准的依赖性随着间隙距离的增加而减小,并且当间隙距离为64μm时,依赖性几乎消失,从而能够进行不受监控的光学焊料的形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号