首页> 外文期刊>Journal of Laser Applications >Laser cutting of carbon fiber reinforced plastic using a 30 kW fiber laser
【24h】

Laser cutting of carbon fiber reinforced plastic using a 30 kW fiber laser

机译:使用30 kW光纤激光器激光切割碳纤维增强塑料

获取原文
获取原文并翻译 | 示例
           

摘要

Today, industrial usage of carbon fiber reinforced plastic (CFRP) is steadily increasing, with an amount of 67 000 ton/yr ["Carbon fibers and carbon fiber reinforced plastics (CFRP)-A global market overview," Report, Research and Markets Ltd., Dublin, Ireland, 2013]. Products such as the Boeing 787 and Airbus A350 in the aerospace sector, as well as the BMW i3 from the automotive industry consist of more than 50% of CFRP in their structural weight. At the same time, these products also have comparatively high production volumes, e.g., 10 000 cars/yr in the case of the BMW i3 ["BMW undertakes global launch of i3 EV," see http://www.ihs.com/products/globalinsight/industry-economic-report.aspx?id=1065981621, May 20, 2014]. Therefore, a higher degree in automation and cost-efficiency is needed in production. Due to the highly abrasive carbon fibers, conventional machining processes result in short tool life and high costs. Therefore, laser cutting of CFRP as a wear-free alternative has lately become the focus of several research groups. Two different approaches are commonly chosen: cutting by short-and ultra-short pulsed laser systems to reach a process regime of cold ablation and cutting with continuous wave (cw) lasers at high cutting speeds. For the latter approach, it has already been shown that by increasing power and cutting speed, the heat affected zone (HAZ) can be reduced due to less time allowed for heat conduction [Bluemel et al., "Laser machining of CFRP using a high power laser-Investigation on the heat affected zone," in Proceedings of 15th European Conference on Composite Materials, Venice, Italy (2012)]. Graf and Weber introduced a perpendicular heat flow model, calculating that the required intensity to cut 2 mm of CFRP with a HAZ of 10 mu m using a cw laser is 10(9)W/cm(2). The required cutting speed is 8.3 m/s [T. Graf and R. Weber, "Laser applications from production to machining of composite materials," in Proceedings of EALA, Bad Nauheim, Germany (2012), pp. 289-299]. In this paper, experiments using an ultra-high power fiber laser system of 30 kW to cut CFRP laminates are presented. Although it is not possible to fully achieve the intensities proposed by Graf and Weber, the intensities of approx. 10(8)W/cm(2) of the setup still allow for a practical validation of the CFRP cutting at very high laser power. Due to the high intensities, high cutting speeds per laser pass are necessary. A special experimental setup is chosen with a rotational movement of the specimen, reaching a feed rate of 85 m/s. The heat affected zone was considerably reduced to 78 mu m with the 30 kW system, 10% lower than with a 5 kW system under comparable conditions. Although today no scanner systems are available that could handle these high intensities at such high cutting speeds, the experiments still show that processing of CFRP with cw laser systems at highest power has a potential in order to reduce the heat damage to the material. (C) 2015 Laser Institute of America.
机译:如今,碳纤维增强塑料(CFRP)的工业用途稳步增加,含量为67 000吨/ yr [“碳纤维和碳纤维增强塑料(CFRP)-A全球市场概述”,报告,研究和市场有限公司。,都柏林,爱尔兰,2013]。诸如波音787和空中客车A350的产品,以及来自汽车行业的BMW I3,其结构重量超过50%的CFRP。与此同时,这些产品也具有相对高的生产体积,例如,在BMW I3的情况下> 10 000辆汽车/年,[“宝马进行I3 ev的全球推出,”见http://www.ihs.com /products/globalinsight/industry-economic-report.aspx?id=1065981621,2014年5月20日]。因此,生产中需要更高程度的自动化和成本效率。由于高磨料碳纤维,常规加工过程导致刀具寿命短,成本高。因此,激光切割CFRP作为无赖的替代方案最近成为几个研究组的重点。通常选择两种不同的方法:通过短和超短脉冲激光系统切割,以达到冷热的过程制度,并以高切削速度与连续波(CW)激光切割。对于后一种方法,已经表明,通过增加功率和切割速度,由于允许的时间较少,可以减少热影响的区域(HAZ),用于使用高度的CFRP激光加工CFRP的激光加工电力激光调查热影响区,“在威尼斯,意大利威尼斯(2012)的第15届欧洲综合会议议程中。格拉夫和韦伯引入了一个垂直的热流模型,计算使用CW激光器的10μm的HAZ切割2mm CFRP的所需强度为10(9)W / cm(2)。所需的切割速度为8.3 m / s [t. Graf和R.Weber,“从生产到加工复合材料的激光应用,”在Eala,Bad Nauheim,德国(2012),PP。289-299]中。本文介绍了采用超大功率光纤激光系统的实验,以削减CFRP层压板30 kW。虽然无法充分实现GRAF和Weber提出的强度,但强度约为。 10(8)W / cm(2)设置仍然允许在非常高的激光功率下进行CFRP切割的实际验证。由于高强度,需要每次激光通行量的高切削速度。选择特殊的实验设置,采用样品的旋转运动,达到85米/秒的进料速率。热影响区随着30 kW的系统,30 kW系统的78μm大于78μm,比在可比条件下的5 kW系统低10%。虽然今天没有扫描仪系统可以在这种高切割速度处理这些高强度的情况下,但实验仍然表明CFRP与最高功率的CW激光系统的处理具有潜力,以减少对材料的热量损坏。 (c)2015年激光研究所。

著录项

  • 来源
    《Journal of Laser Applications》 |2015年第2期|A2S28001.1-S28001.7|共8页
  • 作者单位

    Hamburg Univ Technol Inst Laser & Syst Technol D-21073 Hamburg Germany;

    Hamburg Univ Technol Inst Laser & Syst Technol D-21073 Hamburg Germany;

    Hamburg Univ Technol Inst Laser & Syst Technol D-21073 Hamburg Germany;

    Hamburg Univ Technol Inst Laser & Syst Technol D-21073 Hamburg Germany;

    Hamburg Univ Technol Inst Laser & Syst Technol D-21073 Hamburg Germany;

    Hamburg Univ Technol Inst Laser & Syst Technol D-21073 Hamburg Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号