首页> 外文期刊>Journal of Hydraulic Engineering >Coherent Structure Dynamics in Turbulent Flows Past In-Stream Structures: Some Insights Gained via Numerical Simulation
【24h】

Coherent Structure Dynamics in Turbulent Flows Past In-Stream Structures: Some Insights Gained via Numerical Simulation

机译:流过结构后的湍流相干结构动力学:通过数值模拟获得的一些见解

获取原文
获取原文并翻译 | 示例
       

摘要

Large-scale coherent vortical structures in natural streams and rivers dominate flow and transport processes and impact the stability of stream banks, the diversity and abundance of organisms, and the quality of running waters in aquatic ecosystems. Thus, understanding and being able to model the dynamics of energetic coherent structures in such flows at ecologically relevant scales are crucial prerequisites for developing a science-based ecosystem restoration framework. We review recent progress toward the development of coherent-structure-resolving (CSR) computational fluid dynamics techniques, based on hybrid URANS/LES modeling strategies, for simulating turbulent flows in open-channels with hydraulic structures. CSR simulations of the turbulent horseshoe vortex (THSV) past bed-mounted piers explained the physical mechanism leading to the experimentally documented bimodal velocity fluctuations of the vortex and underscored the importance of the Reynolds number as a key parameter governing the THSV dynamics. Simulations of high Reynolds number flows past surface-piercing, groynelike structures in open channels revealed the complexity of the recirculating region at the upstream face of the groyne, underscored the interaction of the flow in this region with the energetic shear layer shed from the point of separation at the upstream side wall, and demonstrated the importance of flow depth in the vorticity dynamics of such flows. The paper also identifies areas for future work and modeling challenges that need to be addressed for the computational tools to be able to accurately predict flow and transport processes in real-life aquatic environments.
机译:天然小溪和河流中的大规模连贯旋涡结构主导着水流和运输过程,并影响了溪流的稳定性,生物的多样性和丰富性以及水生生态系统中自来水的质量。因此,了解并能够在生态学相关尺度上模拟此类流中的高能相干结构的动力学,这是开发基于科学的生态系统恢复框架的关键前提。我们回顾了基于混合URANS / LES建模策略的相干结构解析(CSR)计算流体动力学技术的最新进展,该技术用于模拟水力结构明渠中的湍流。 CSR模拟了经过床墩的湍流马蹄形涡流(THSV),解释了导致实验记录的涡旋双峰速度波动的物理机制,并强调了雷诺数作为控制THSV动力学的关键参数的重要性。高雷诺数流经过明渠中穿刺的,类似波罗的结构的模拟表明,在波罗的上游面的再循环区域非常复杂,从该点出发,强调了该区域中的流动与高能剪切层之间的相互作用。分离在上游侧壁,并证明了流动深度在这种流动的涡旋动力学中的重要性。本文还确定了计算工具需要解决的未来工作和建模挑战领域,以便能够准确预测现实水生环境中的流量和运输过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号