...
首页> 外文期刊>Journal of Hydraulic Engineering >Three-Dimensional Simulation of Scalar Transport in Large Shallow Water Systems Using Flux-Form Eulerian-Lagrangian Method
【24h】

Three-Dimensional Simulation of Scalar Transport in Large Shallow Water Systems Using Flux-Form Eulerian-Lagrangian Method

机译:使用助熔剂欧拉拉罗格兰法测量浅水系统标量传输的三维模拟

获取原文
获取原文并翻译 | 示例
           

摘要

This study is devoted to advancing hydroenvironmental modeling of large-scale shallow water systems to the times of three-dimensional (3D) simulations, where the solution of advective transport of scalar is the focus. The solution to the transport model is demonstrated using a semi-implicit hydrostatic 3D flow model, which uses an Eulerian-Lagrangian method (ELM) and a prediction-correction method. A new 3D scalar advection scheme, the 3D flux-form ELM (FFELM), is proposed based on layer-integrated advection subequations. The new scheme allows large time steps for which the Courant number is greater than 1 and is parallelizable. A grid sensitivity study is performed using a solid-body rotation experiment, in which the FFELM is indicated to achieve the performance of second-order accuracy advection schemes and run stably under a time step for which the Courant number is much larger than 1. Moreover, a nested FFELM (FFELM-N) is proposed, in which the trajectory-tracking information of the ELM in the 3D flow model is reused to reduce the startup cost of the transport model. The new model is also tested using the real Jing-Dongting (JDT) river-lake system, for which the computational domain (3,900 km2 in the horizontal) is divided by a computational grid of 327,820x10 cells. A parallel run of the transport model (using 16 cores) is approximately 10 times faster than a sequential run. The runtime of the transport model using the FFELM-N is reduced to one-third that using the FFELM in both sequential and parallel tests. Using 16 cores, it takes 6.02 days to complete the calculation of a one-year unsteady process of flow and scalar transport in the JDT system, for which the runtime of the transport model using the FFELM-N is only 1.28 days. (c) 2020 American Society of Civil Engineers.
机译:本研究致力于向三维(3D)模拟的大规模浅水系统的水力环境建模推进到三维(3D)模拟的时代,其中平均运输标量是焦点。使用半隐式静水压3D流模型来证明传输模型的解决方案,其使用Eulerian-Lagrangian方法(ELM)和预测校正方法。提出了一种基于层综合的平流备份的3D芯片ELM(FFELM)。新方案允许扶手数大于1的大时间步长并且是并行化的。使用固体旋转实验进行网格敏感性研究,其中指示FFELM以实现二阶精度平行方案的性能,并在龙头数大于1的时间步骤中稳定地运行。此外,提出了一种嵌套的FFELM(FFELM-N),其中重复使用3D流模型中ELM的轨迹跟踪信息以降低传输模型的启动成本。新模型也使用真正的景洞(JDT)River-Lake系统进行测试,计算域(水平3,900 km2)由327,820x10细胞的计算网格除以。传输模型(使用16个核心)的并行运行比顺序运行快约10倍。使用FFELM-N的传输模型的运行时间减少到第三个,在顺序和并行测试中使用FFELM。使用16个核心需要6.02天才能完成JDT系统中的一年不稳定过程的计算,其中运输模型的运行时间仅需1.28天。 (c)2020年美国土木工程师协会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号