首页> 外文期刊>Journal of Heat Transfer >Effects of Variable Viscosity and Thermal Conductivity of CuO-Water Nanofluid on Heat Transfer Enhancement in Natural Convection: Mathematical Model and Simulation
【24h】

Effects of Variable Viscosity and Thermal Conductivity of CuO-Water Nanofluid on Heat Transfer Enhancement in Natural Convection: Mathematical Model and Simulation

机译:CuO-水纳米流体的可变粘度和导热系数对自然对流传热增强的影响:数学模型和仿真

获取原文
获取原文并翻译 | 示例
       

摘要

Heat transfer enhancement in horizontal annuli using variable thermal conductivity and variable viscosity of CuO-water nanofluid is investigated numerically. The base case of simulation used thermal conductivity and viscosity data that consider temperature property dependence and nanoparticle size. It was observed that for Ra≥10~4, the average Nusselt number was deteriorated by increasing the volume fraction of nanoparticles. However, for Ra = 10~3, the average Nusselt number enhancement depends on aspect ratio of the annulus as well as volume fraction of nanoparticles. Also, for Ra = 10~3, the average Nusselt number was less sensitive to volume fraction of nanoparticles at high aspect ratio and the average Nusselt number increased by increasing the volume fraction of nanoaprticles for aspect ratios ≤0.4. For Ra≥ 10~4, the Nusselt number was deteriorated everywhere around the cylinder surface especially at high aspect ratio. However, this reduction is only restricted to certain regions around the cylinder surface for Ra = 10~3. For Ra ≥ 10~4, the Maxwell-Garnett and the Chon et al. conductivity models demonstrated similar results. But, there was a deviation in the prediction at Ra = 10~3 and this deviation becomes more significant at high volume fraction of nanoparticles. The Nguyen et al. data and the Brinkman model give completely different predictions for Ra ≥ 10~4, where the difference in prediction of the Nusselt number reached 50%. However, this difference was less than 10% at Ra = 10~3.
机译:数值研究了使用可变导热系数和可变粘度的CuO-水纳米流体在水平环空中的传热。模拟的基本情况是使用导热率和粘度数据,这些数据考虑了温度特性和纳米粒子的大小。观察到,对于Ra≥10〜4,平均努塞尔数通过增加纳米粒子的体积分数而恶化。然而,当Ra = 10〜3时,平均Nusselt数的增加取决于环的长径比以及纳米粒子的体积分数。同样,对于Ra = 10〜3,在长宽比高的情况下,平均Nusselt数对纳米粒子的体积分数不那么敏感,并且在长宽比≤0.4的情况下,平均Nusselt数通过增加纳米微粒的体积分数而增加。当Ra≥10〜4时,圆柱面周围各处的Nusselt值都会下降,特别是在高纵横比的情况下。但是,对于Ra = 10〜3,这种减小只限于圆柱表面周围的某些区域。对于Ra≥10〜4,Maxwell-Garnett和Chon等人。电导率模型显示出相似的结果。但是,在Ra = 10〜3时,预测值存在偏差,当纳米粒子的体积分数较高时,该偏差会变得更大。阮等。数据和Brinkman模型给出的Ra≥10〜4的预测完全不同,其中Nusselt数的预测差异达到50%。然而,在Ra = 10〜3时,该差异小于10%。

著录项

  • 来源
    《Journal of Heat Transfer》 |2010年第5期|p.052401.1-052401.9|共9页
  • 作者

    Eiyad Abu-Nada;

  • 作者单位

    Intitut fuer Technishe Verbrennung,Leibniz Universtaet Hannover,Welfengarten 1a,Hannover 30167, Germany Department of Mechanical Engineering,Hashemite University,Zarqa 13115, Jordan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    nanofluid; viscosity; thermal conductivity; natural convection; annulus;

    机译:纳米流体粘度导热系数;自然对流;环;
  • 入库时间 2022-08-18 00:26:06

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号