首页> 外文期刊>Journal of Heat Transfer >Characterization and Modeling of the Heat Transfer Performance of Nanostructured Cu Micropost Wicks
【24h】

Characterization and Modeling of the Heat Transfer Performance of Nanostructured Cu Micropost Wicks

机译:纳米结构铜微柱芯的传热性能表征与建模

获取原文
获取原文并翻译 | 示例
           

摘要

Micro heat pipes incorporating advanced wicks are promising for the thermal management of power electronics. We report the heat transfer performance of superhydrophilic Cu micropost wicks fabricated on thin silicon substrates using electrochemical deposition and controlled chemical oxidation. For a fixed post diameter, the interpost spacing and hence solid fraction is found to be a main design factor affecting the effective heat transfer coefficient and critical heat flux. The effective heat transfer coefficient >10 W/cm~2 K and the critical heat flux >500 W/cm~2 over 2 mm × 2 mm heating areas are demonstrated. Copper oxide- nanostructures formed on the micropost surfaces significantly enhance the critical heat flux without compromising the effective heat transfer coefficient. An approximate numerical model is developed to help interpret the experimental data. A surface energy minimization algorithm is used to predict the static equilibrium shape of a liquid meniscus, which is then imported into a finite element model to predict the effective heat transfer coefficient. The advanced wick structures and experimental and modeling approaches developed in this work will help develop thin and lightweight thermal management solutions for high-power-density semiconductor devices.
机译:带有高级灯芯的微型热管有望用于电力电子设备的热管理。我们报告了使用电化学沉积和受控化学氧化在薄硅基板上制造的超亲水性铜微柱芯的传热性能。对于固定的柱直径,发现柱间间距以及因此的固体分数是影响有效传热系数和临界热通量的主要设计因素。在2 mm×2 mm的加热区域内,有效传热系数> 10 W / cm〜2 K,临界热通量> 500 W / cm〜2。在微柱表面上形成的氧化铜纳米结构可显着提高临界热通量,而不会影响有效的传热系数。开发了一个近似的数值模型来帮助解释实验数据。使用表面能最小化算法来预测液体弯月面的静态平衡形状,然后将其导入到有限元模型中以预测有效的传热系数。在这项工作中开发的先进的灯芯结构以及实验和建模方法将有助于为高功率密度半导体器件开发轻薄的热管理解决方案。

著录项

  • 来源
    《Journal of Heat Transfer》 |2011年第10期|p.101502.1-101502.7|共7页
  • 作者单位

    Mechanical and Aerospace Engineering Department, University of California, Los Angeles, 90095-1597;

    Mechanical and Aerospace Engineering Department, University of California, Los Angeles, 90095-1597;

    Mechanical and Aerospace Engineering Department, University of California, Los Angeles, 90095-1597;

    Mechanical and Aerospace Engineering Department, University of California, Los Angeles, 90095-1597;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    heat pipe; electronic cooling; evaporation;

    机译:热管;电子冷却;蒸发;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号