首页> 外文期刊>Journal of Heat Transfer >A Numerical Investigation of Turbulent Flow and Heat Transfer in Rectangular Channels With Elliptic Scale-Roughened Walls
【24h】

A Numerical Investigation of Turbulent Flow and Heat Transfer in Rectangular Channels With Elliptic Scale-Roughened Walls

机译:椭圆形壁面矩形通道内湍流和传热的数值研究

获取原文
获取原文并翻译 | 示例
       

摘要

In the present paper, rectangular channels with six types of elliptic scale-roughened walls for heat transfer enhancement are numerically studied. Heat transfer and fluid flow characteristics for sixteen different scale-roughened models (with the scale height varying in the range from 1 mm to 2.5 mm) are numerically predicted using commercial computational fluid dynamics (CFD) code, ansys. The turbulent model employed is the k-ω based shear-stress transport (SST) model with automatic wall function treatment. In the performance evaluation, we use a "universal" porous media length scale based on volume averaging theory (VAT) to define the Reynolds number, Nusselt number, and friction factor. It is found that heat transfer performance is most favorable when the elliptic scales are oriented with their long axis perpendicular to the flow direction, while the scales elongated in the flow direction have lower Nusselt numbers and pressure drops compared with the circular scale-roughened channels. Results indicate that the scale-shaped roughness strongly spins the flow in the spanwise direction, which disrupts the near-wall boundary layers continuously and enhances the bulk flow mixing. With the flow marching in a more intense spiral pattern, a 40% improvement of heat transfer enhancement over the circular scale-roughened channels is observed.
机译:在本文中,对具有六种类型的椭圆鳞片粗糙壁以增强传热的矩形通道进行了数值研究。使用商业计算流体动力学(CFD)代码ansys对16种不同的,经比例缩放的模型(比例高度在1 mm到2.5 mm范围内变化)的传热和流体流动特性进行了数值预测。所采用的湍流模型是基于k-ω的剪切应力传递(SST)模型,具有自动墙函数处理功能。在性能评估中,我们基于体积平均理论(VAT)使用“通用”多孔介质长度尺度来定义雷诺数,努塞尔数和摩擦系数。已经发现,当椭圆形氧化皮的长轴垂直于流动方向取向时,传热性能是最有利的,而与圆形氧化皮粗糙化的通道相比,沿流动方向拉长的氧化皮具有较低的努塞尔数和压降。结果表明,鳞片状的粗糙度使气流在翼展方向上强烈旋转,这连续破坏了近壁边界层,并增强了整体流混合。随着流动以更强烈的螺旋形前进,与圆形氧化皮粗糙的通道相比,传热增强提高了40%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号