首页> 外文期刊>Journal of Heat Transfer >Effect of Liquid Properties on Phase-Change Heat Transfer in Porous Wick Structures
【24h】

Effect of Liquid Properties on Phase-Change Heat Transfer in Porous Wick Structures

机译:液体性质对多孔灯芯结构相变传热的影响

获取原文
获取原文并翻译 | 示例
       

摘要

In a heat pipe, operating fluid saturates wick structures system and establishes a capillary-driven circulation loop for heat transfer. Thus, the thermophysical properties of the operating fluid inevitably impact the transitions of phase-change mode and the capability of heat transfer, which determine both the design and development of the associated heat pipe systems. This article investigates the effect of liquid properties on phase-change heat transfer. Two different copper wick structures, cubic and cylindrical in cross section, 340 μm in height and 150 μm in diameter or width, are fabricated using an electroplating technique. The phase-change phenomena inside these wick structures are observed at various heat fluxes. The corresponding heat transfer characteristics are measured for three different working liquids: water, ethanol, and Novec 7200. Three distinct modes of the phase-change process are identified: (1) evaporation on liquid-vapor interface, (2) nucleate boiling with interfacial evaporation, and (3) boiling enhanced interface evaporation. Transitions between the three modes depend on heat flux and liquid properties. In addition to the mode transition, liquid properties also dictate the maximum heat flux and the heat transfer coefficient. A quantitative characterization shows that the maximum heat flux scales with Merit number, a dimension/ess number connecting liquid density, surface tension, latent heat of vaporization, and viscosity. The heat transfer coefficient, on the other hand, is dictated by the thermal conductivity of the liquid. A complex interaction between the mode transition and liquid properties is reflected in Novec 7200. In spite of having the lowest thermal conductivity among the three liquids, an early transition to the mode of the boiling enhanced interface evaporation leads to a higher heat transfer coefficient at low heat flux.
机译:在热管中,工作流体会使灯芯结构系统饱和,并建立毛细管驱动的循环回路进行热传递。因此,工作流体的热物理性质不可避免地影响相变模式的转变和热传递的能力,这决定了相关热管系统的设计和开发。本文研究了液体性质对相变传热的影响。使用电镀技术制造了两种不同的铜芯结构,其横截面为立方和圆柱形,高度为340μm,直径或宽度为150μm。在各种热通量下都可以观察到这些灯芯结构内部的相变现象。针对三种不同的工作液体:水,乙醇和Novec 7200,测量了相应的传热特性。确定了三种不同的相变过程模式:(1)液-气界面上的蒸发,(2)带界面的核沸腾蒸发,和(3)沸腾增强界面蒸发。三种模式之间的转换取决于热通量和液体性质。除了模式转变之外,液体性质还决定了最大热通量和传热系数。定量表征表明,最大热通量随Merit值,连接液体密度,表面张力,汽化潜热和粘度的尺寸/ ess数成比例。另一方面,传热系数由液体的热导率决定。 Novec 7200反映了模式转变和液体特性之间的复杂相互作用。尽管三种液体中的导热率最低,但早期过渡到沸腾增强界面蒸发的模式会导致较低的传热系数。热通量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号