首页> 外文期刊>Journal of Heat Transfer >Dependence of Film Cooling Effectiveness on Three-Dimensional Printed Cooling Holes
【24h】

Dependence of Film Cooling Effectiveness on Three-Dimensional Printed Cooling Holes

机译:薄膜冷却效率对三维印刷冷却孔的依赖性

获取原文
获取原文并翻译 | 示例
       

摘要

Film cooling effectiveness is closely dependent on the geometry of the hole emitting the cooling film. These holes are sometimes quite expensive to machine by traditional methods, so 3D printed test pieces have the potential to greatly reduce the cost of film cooling experiments. What is unknown is the degree to which parameters like layer resolution and the choice among 3D printing technologies influence the results of a film cooling test. A new flat-plate film cooling facility employing oxygen-sensitive paint (OSP) verified by gas sampling and the mass transfer analogy and measurements both by gas sampling and OSP is verified by comparing measurements by both gas sampling and OSP. The same facility is then used to characterize the film cooling effectiveness of a diffuser-shaped film cooling hole geometry. These diffuser holes are then produced by a variety of additive manufacturing (AM) technologies with different build layer thicknesses. The objective is to determine if cheaper manufacturing techniques afford usable and reliable results. The coolant gas used is CO2 yielding a density ratio (DR) of 1.5. Surface quality is characterized by an optical microscope that measures surface roughness. Test coupons with rougher surface topology generally showed delayed blow off and higher film cooling effectiveness at high blowing ratios (BR) compared to the geometries with lower measured surface roughness. At the present scale, none of the additively manufactured parts consistently matched the traditionally machined part, indicating that caution should be exercised in employing additively manufactured test pieces in film cooling work.
机译:膜的冷却效率紧密取决于发射冷却膜的孔的几何形状。使用传统方法加工这些孔有时会非常昂贵,因此3D打印的测试件有可能大大降低薄膜冷却实验的成本。未知的是诸如层分辨率和3D打印技术之间的选择之类的参数在多大程度上影响胶片冷却测试的结果。一种新的平板式薄膜冷却设备,采用通过气体采样验证的氧敏涂料(OSP)以及通过气体采样和OSP进行的传质模拟和测量,通过比较气体采样和OSP的测量来验证。然后使用相同的设备来表征扩散器形薄膜冷却孔几何形状的薄膜冷却效率。然后,通过各种具有不同构造层厚度的增材制造(AM)技术生产这些扩散孔。目的是确定便宜的制造技术是否能提供可用和可靠的结果。所用的冷却剂气体为CO2,密度比(DR)为1.5。表面质量的特征在于可以测量表面粗糙度的光学显微镜。与具有较低测量表面粗糙度的几何形状相比,具有较粗糙表面拓扑的测试试样通常在高吹塑比(BR)下显示出延迟的吹气和较高的薄膜冷却效率。在目前的规模下,没有一个增材制造的零件能够与传统机加工零件保持一致,这表明在薄膜冷却工作中采用增材制造的试样时应谨慎行事。

著录项

  • 来源
    《Journal of Heat Transfer》 |2017年第10期|102003.1-102003.15|共15页
  • 作者单位

    Department of Aerospace Engineering, University of Cincinnati, Cincinnati, OH, United States;

    Department of Aerospace Engineering, University of Cincinnati, Cincinnati, OH, United States;

    Department of Aerospace Engineering, University of Cincinnati, Cincinnati, OH, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:21:55

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号