...
首页> 外文期刊>Journal of Heat Transfer >Experimental Investigation of Jet Impingement Cooling With Carbon Dioxide at Supercritical Pressures
【24h】

Experimental Investigation of Jet Impingement Cooling With Carbon Dioxide at Supercritical Pressures

机译:超临界压力下二氧化碳射流冲击冷却实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

Jet impingement cooling is widely used in many industrial applications due to its high heat transfer capability and is an option for advanced high power density systems. Jet impingement cooling with supercritical pressure fluids could have much larger heat transfer rates combining with the large fluid specific heat near the pseudocritical point. However, the knowledge of its flow and heat transfer characteristics is limited. In this study, the flow and the local and average heat transfer characteristics of jet impingement cooling with supercritical pressure fluids were studied experimentally with carbon dioxide first. An integrated thermal sensor chip that provided heating and temperature measurements was manufactured using micro-electro-mechanical systems (MEMS) techniques with a low thermal conductivity substrate as the impingement cooled plate. The experiment system pressure was 7.85 MPa, which is higher than the critical pressure of carbon dioxide of 7.38 MPa. The mass flow rate ranged from 8.34 to 22.36 kg/h and the Reynolds number ranged from 19,000 to 68,000. The heat flux ranged from 0.02 to 0.22 MW/m~2. The nozzle inlet temperature ranged from lower to higher than the pseudocritical temperature. Dramatic variations of the density at supercritical pressures near the heating chip were observed with increasing heat flux in the strong reflection and refraction of the backlight that disappeared at inlet temperatures higher than the pseudocritical temperature. The local heat transfer coefficient near the stagnation point increased with increasing heat flux while those far from the stagnation point increased to a maximum with increasing heat flux and then decreased due to the nonuniformity of jet impingement cooling. The heat transfer is higher at inlet temperatures lower than the pseudocritical temperature and the surface temperature is slightly higher than the pseudocritical temperature due to the dramatic changes in the fluid thermo-physical properties at supercritical pressures.
机译:射流冲击冷却由于其高的传热能力而在许多工业应用中得到了广泛使用,并且是高级高功率密度系统的一种选择。超临界压力流体的射流冲击冷却可能具有更大的传热速率,再加上伪临界点附近的大量流体比热。然而,关于其流动和传热特性的知识是有限的。在这项研究中,首先用二氧化碳对超临界压力流体的射流冲击冷却的流动,局部和平均传热特性进行了实验研究。使用微机电系统(MEMS)技术制造了提供热量和温度测量的集成热传感器芯片,该技术具有低导热率的基板作为冲击冷却板。实验系统压力为7.85 MPa,高于二氧化碳的临界压力7.38 MPa。质量流量范围为8.34至22.36 kg / h,雷诺数范围为19,000至68,000。热通量范围为0.02至0.22MW / m〜2。喷嘴入口温度范围从低于伪临界温度到更高。观察到加热芯片附近超临界压力下密度的剧烈变化,其中背光源的强反射和折射中的热通量增加,而在入口温度高于假临界温度时,背光的强反射和折射消失了。停滞点附近的局部传热系数随着热通量的增加而增加,而远离停滞点的局部传热系数则随着热通量的增加而增加到最大值,然后由于射流冲击冷却的不均匀性而减小。由于流体在超临界压力下的热物理性质发生了巨大变化,因此在进口温度低于假临界温度时,传热较高,而表面温度略高于假临界温度。

著录项

  • 来源
    《Journal of Heat Transfer》 |2018年第4期|042204.1-042204.10|共10页
  • 作者单位

    Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Key Laboratory for CO_2 Utilization and Reduction Technology of Beijing, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China;

    Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Key Laboratory for CO_2 Utilization and Reduction Technology of Beijing, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China;

    Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Key Laboratory for CO_2 Utilization and Reduction Technology of Beijing, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    jet impingement cooling; supercritical pressures; carbon dioxide; MEMS;

    机译:射流冲击冷却超临界压力二氧化碳;微机电系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号