首页> 外文期刊>Journal of Heat Transfer >Enhanced Flow Boiling Using Radial Open Microchannels With Manifold and Offset Strip Fins
【24h】

Enhanced Flow Boiling Using Radial Open Microchannels With Manifold and Offset Strip Fins

机译:使用带有歧管和偏置带状鳍片的径向开放式微通道增强流沸腾

获取原文
获取原文并翻译 | 示例
       

摘要

The increasing demand for designing effective cooling solutions in high power density electronic components has resulted in exploring advanced thermal management strategies. Over the past decade, phase-change cooling has received widespread recognition due to its ability to dissipate large heat fluxes while maintaining low temperature differences. In this paper, a radial flow boiling configuration through a central inlet was studied. This configuration is particularly suited for chip cooling application. Two heat transfer surfaces with (a) radial microchannels, and (b) offset strip fins were fabricated and their flow boiling performance with distilled water was obtained. Furthermore, the effect of the liquid flow rate on the boiling performance and enhancement mechanisms was also investigated in this study. At a flow rate of 240 mL/min, a maximum heat flux of 369 W/cm~2 at a wall superheat of 49℃ and a pressure drop of 59 kPa was achieved with the radial microchannels, while the offset strip fins achieved a maximum heat flux of 618 W/cm~2 at a wall superheat of 20℃. Increasing the flow rate to 320 mL/min resulted in a heat flux of 897 W/cm~2 demonstrating the potential of using a radial configuration for enhancing the boiling performance. The increase in flow cross-sectional area was shown to be responsible for the reduced pressure drop when compared to straight micro-channel configurations. The high-speed imaging incorporated in each test provided valuable insight and understanding into the flow patterns and underlying mechanism in these geometries. With the ease of implementation, highly stable flow, and further optimization possibilities with different microchannel and taper configurations, the radial geometry is expected to provide significant performance enhancement well beyond a critical heat flux (CHF) of 1 kW/cm~2.
机译:在高功率密度电子元件中设计有效冷却解决方案的需求不断增加,因此需要探索先进的热管理策略。在过去的十年中,相变冷却技术能够散发大的热通量,同时又保持较低的温度差,因此得到了广泛的认可。在本文中,研究了通过中心入口的径向流沸腾结构。此配置特别适合于芯片冷却应用。制作了两个带有(a)径向微通道和(b)偏置条形散热片的传热表面,并获得了它们在蒸馏水中的流煮性能。此外,本研究还研究了液体流速对沸腾性能和增强机理的影响。径向微通道在流速为240 mL / min时,壁过热度为49℃,压降为59 kPa时,最大热通量为369 W / cm〜2,而偏移条形翅片达到最大。在20℃的壁过热下的热通量为618 W / cm〜2。将流速提高到320 mL / min会产生897 W / cm〜2的热通量,这表明使用径向配置提高沸腾性能的潜力。与直的微通道配置相比,流量截面积的增加显示出压力下降的原因。每个测试中包含的高速成像技术为这些几何形状中的流动模式和潜在机理提供了宝贵的见识和理解。由于易于实施,高度稳定的流动以及具有不同微通道和锥度配置的进一步优化可能性,径向几何形状有望显着提高性能,远远超过1 kW / cm〜2的临界热通量(CHF)。

著录项

  • 来源
    《Journal of Heat Transfer》 |2018年第2期|021502.1-021502.9|共9页
  • 作者单位

    Mechanical Engineering Department, Rochester Institute of Technology, 76 Lomb Memorial Dr., Rochester, NY 14623;

    Fellow ASME Mechanical Engineering Department, Rochester Institute of Technology, 76 Lomb Memorial Dr., Rochester, NY 14623, Microsystems Engineering Department, Rochester Institute of Technology, 76 Lomb Memorial Dr., Rochester, NY 14623;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:21:13

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号