首页> 外文期刊>Journal of Heat Transfer >Inverse Estimation of Heat Transfer Coefficient and Reference Temperature in Jet Impingement
【24h】

Inverse Estimation of Heat Transfer Coefficient and Reference Temperature in Jet Impingement

机译:喷射冲击中传热系数和参考温度的逆估计

获取原文
获取原文并翻译 | 示例
       

摘要

Applications of impinging jets are wide-ranging from cooling to heating in industrial as well as domestic field. Most of the reported heat transfer distribution data to and from impinging jets have been found from steady-state measurements. This study utilizes the solution to three-dimensional (3D) inverse heat conduction problem to estimate transient temperatures on the impingement side. Then, the temperature gradient is determined near the impingement wall (~0.01 mm inside) with which transient heat flux is estimated on the impingement side. Instead of steady-state values, transient heat flux and corresponding wall temperatures are utilized in a thin foil technique to find out heat transfer coefficient and reference temperature simultaneously. The scope of the present technique is examined through its application to impinging jets with various configurations such as laminar jet, turbulent jet, hot jet, cold jet, and multiple jets. In all cases, estimations are reasonably close. The application of this inverse technique can be extended to any configuration of jet impingement irrespective of geometry of nozzle (circular/ rectangular), the orientation of nozzle (orthogonal/inclined), the temperature of a jet (hot/cold), Reynolds numbers (laminar/turbulent), the nozzle-to-plate spacing (any Z/d), and roughness of the plate surface. The effect of plate thickness on the accuracy of the present technique is also studied. Up to 5 mm thick plates can be used in impinging jet applications without worrying much on accuracy. The use of the present technique significantly reduces the experimental cost and time since it works on transient data of just a few seconds.
机译:撞击喷射喷射的应用宽加于工业和国内场的冷却至加热。已经发现了大多数报告的传热分布数据以及从稳态测量中发现射门喷射。该研究利用对三维(3D)逆热导热问题的解决方案来估计冲击侧的瞬态温度。然后,在冲击侧估计瞬态热通量的冲击壁(〜0.01mm内)附近确定温度梯度。代替稳态值,瞬态热通量和相应的壁温度用于薄的箔技术,同时找出传热系数和参考温度。通过应用来检查本技术的范围,以抵抗具有各种配置的喷射,例如层射流,湍流射流,热射流,冷射流和多个喷射。在所有情况下,估计都相当接近。该逆技术的应用可以延伸到喷射冲击的任何配置,而无论喷嘴的几何形状(圆形/矩形),喷嘴(正交/倾斜)的方向,喷射(热/冷)的温度,雷诺数(层流/湍流),喷嘴到板间隔(任何Z / D)和板表面的粗糙度。还研究了板厚对本技术精度的影响。最多5毫米厚的板可用于撞击喷射应用,而不是担心精度。本技术的使用显着降低了实验成本和时间,因为它在短短几秒钟的瞬态数据上工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号