首页> 外文期刊>Journal of Hazardous Materials >Enhancing phytoremediation of hazardous metal(loid)s using genome engineering CRISPR-Cas9 technology
【24h】

Enhancing phytoremediation of hazardous metal(loid)s using genome engineering CRISPR-Cas9 technology

机译:使用基因组工程CRAP-CAS9技术增强危险金属(LOID)S的植物修复

获取原文
获取原文并翻译 | 示例
           

摘要

Rapid and drastic changes in the global climate today have given a strong impetus to developing newer climateresilient phytoremediation approaches. These methods are of great public and scientific importance given the urgency of this environmental crisis. Climate change has adverse effects on the growth, outputs, phenology, and overall productivity of plants. Contamination of soil with metal(loid)s is a major worldwide problem. Some metal (loids) are carcinogenic pollutants that have a long half-life and are non-degradable in the environment. There are many instances of the potential link between chronic heavy metal exposure and human disease. The adaptation of plants in the changing environment is, however, a major concern in phytoremediation practice. The creation of climate-resistant metal hyperaccumulation plants using molecular techniques could provide new opportunities to mitigate these problems. Consequently, advancements in molecular science would accelerate our knowledge of adaptive plant remediation/resistance and plant production in the context of global warming. Genome modification using artificial nucleases has the potential to enhance phytoremediation by modifying genomes for a sustainable future. This review focuses on biotechnology to boost climate change tolerant metallicolous plants and the future prospects of such technology, particularly the CRISPR-Cas9 genome editing system, for enhancing phytoremediation of hazardous pollutants.
机译:今天全球气候的快速和激烈的变化对开发新的潮气管植物化方法进行了强大的推动力。鉴于这种环境危机的紧迫性,这些方法具有很大的公众和科学的重要性。气候变化对植物的生长,产出,候选和整体生产力产生不利影响。用金属(懒惰)S污染土壤是全球主要问题。一些金属(潜能)是致癌污染物,具有长半衰期,在环境中是不可降解的。慢性重金属暴露和人类疾病之间存在许多潜在联系的情况。然而,植物在不断变化的环境中的适应是植物修复实践中的主要问题。使用分子技术的抗性金属超读植物的创建可以为减轻这些问题提供新的机会。因此,分子科学的进步将在全球变暖的背景下加速我们对自适应植物修复/抵抗和植物生产的知识。使用人造核酸酶的基因组改性具有通过改变可持续未来的基因组来增强植物化。本综述重点介绍生物技术,以提高气候变化耐受金属植物,以及这种技术的未来前景,特别是CRISPR-CAS9基因组编辑系统,用于增强危险污染物的植物修复。

著录项

  • 来源
    《Journal of Hazardous Materials》 |2021年第15期|125493.1-125493.12|共12页
  • 作者单位

    NN Saikia Coll Dept Bot Titabar 785630 Assam India;

    NN Saikia Coll Dept Bot Titabar 785630 Assam India;

    Mahatma Gandhi Cent Univ Sch Life Sci Dept Bot Motihari 845401 Bihar India;

    Univ Hyderabad Sch Life Sci Hyderabad 500046 Telangana India;

    Zhejiang Univ Coll Environm & Resource Sci Inst Soil & Water Resources & Environm Sci Hangzhou 310058 Peoples R China;

    Univ Wuppertal Fac Architecture & Civil Engn Inst Soil Engn Waste & Water Sci Lab Soil & Groundwater Management Pauluskirchstr 7 D-42285 Wuppertal Germany|Univ Sejong Dept Environm Energy & Geoinformat 98 Gunja Dong Seoul South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Metallicolous plants; Climate change induced abiotic stress; Contaminated soils; Biological processes; CRISPR-Cas9 genome editing;

    机译:金属植物;气候变化诱导非生物胁迫;污染的土壤;生物过程;CRISPR-CAS9基因组编辑;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号