...
首页> 外文期刊>Journal of guidance, control, and dynamics >Frozen Orbital Plane Solutions for Satellites in Nearly Circular Orbit
【24h】

Frozen Orbital Plane Solutions for Satellites in Nearly Circular Orbit

机译:近似圆形轨道卫星的冻结轨道平面解决方案

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper deals with the determination of the initial conditions (right ascension of the ascending node and inclination) that minimize the orbital plane variation for nearly circular orbits with a semimajor axis between 3 and 10 Earth radii. An analysis of two-line elements over the last 40 years for mid-, geostationary-, and high-Earth orbits has shown, for initially quasi-circular orbits, low eccentricity variations up to the geostationary altitude. This result makes the application of mathematical models based on satellite circular orbits advantageous for a fast prediction of long-term temporal evolution of the orbital plane. To this purpose, a previous model considering the combined effect due to the Earth's oblateness, moon, and sun (both in circular orbit) has been improved in terms of required computational time and accuracy. The eccentricity of the sun and moon and the equinoctial precession have been taken into account Resonance phenomena with the lunar plane motion have been found in mid-Earth orbit Dynamical properties concerning the precession motions of the orbital pole have been investigated, and frozen solutions for geosynchronous and navigation satellites have been proposed. Finally, an accurate model validation has also been carried out by comparing the obtained results with two-line elements of abandoned geostationary-Earth orbit and mid-Earth orbit satellites.
机译:本文涉及确定初始条件(上升节点的右升和倾斜),这些初始条件使半长轴在3到10个地球半径之间的近似圆形轨道的轨道平面变化最小。对过去40年中,对地静止和高地球轨道的两线元素进行的分析表明,对于最初的准圆形轨道,直到地球静止高度的偏心率变化都较小。该结果使得基于卫星圆形轨道的数学模型的应用有利于快速预测轨道平面的长期时间演化。为此,以前的模型考虑了地球扁率,月亮和太阳(均在圆形轨道上)的综合影响,因此在所需的计算时间和准确性方面得到了改进。考虑了日月偏心和等月进动,在中地球轨道发现了与月球平面运动的共振现象。研究了关于轨道极进动的动力学性质,并冻结了地球同步的解。已经提出了导航卫星。最后,还通过将获得的结果与废弃的对地静止地球轨道卫星和中地球轨道卫星的两线元素进行比较,进行了精确的模型验证。

著录项

  • 来源
    《Journal of guidance, control, and dynamics》 |2013年第4期|935-945|共11页
  • 作者单位

    Department of Astronautical, Electrical and Energetic Engineerine. 851-881 Via Salaria University of Rome "La Sapienza", 00138 Rome, Italy;

    Department of Astronautical, Electrical and Energetic Engineerine. 851-881 Via Salaria University of Rome "La Sapienza", 00138 Rome, Italy;

    Department of Astronautical, Electrical and Energetic Engineerine. 851-881 Via Salaria University of Rome "La Sapienza", 00138 Rome, Italy;

    Department of Astronautical, Electrical and Energetic Engineerine. 851-881 Via Salaria University of Rome "La Sapienza", 00138 Rome, Italy;

    Department of Astronautical, Electrical and Energetic Engineerine. 851-881 Via Salaria University of Rome "La Sapienza", 00138 Rome, Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号