首页> 外文期刊>Journal of geotechnical and geoenvironmental engineering >Effect of Temperature and Radial Displacement Cycles on Soil-Concrete Interface Properties Using Modified Thermal Borehole Shear Test
【24h】

Effect of Temperature and Radial Displacement Cycles on Soil-Concrete Interface Properties Using Modified Thermal Borehole Shear Test

机译:修正热钻孔剪切试验对温度和径向位移循环对混凝土界面特性的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Thermoactive geostructures (such as energy piles) are used for heating and cooling of buildings, which generate daily temperature changes and cycles in the geostructure and surrounding soil due to the intermittent operation of ground-source heat pumps. For energy piles, daily temperature changes and cycles result in cyclic displacement (expansion and contraction) in both the axial and radial directions of the pile and alter soil properties. In this study, a fully automated modified thermal borehole shear test (modified-TBST) device was utilized to perform tests in normally consolidated clayey soil to investigate the effects of temperature cycles (TC) and radial expansion/contraction displacement cycles (RDC) on the soil-energy pile interaction. In addition to directly measuring the shear stress-vertical displacement curves (t-z curves), the soil temperature at different locations and pore pressure were monitored. The fully automated modified-TBST device uses two concrete plates to simulate the pile surface with temperature and expansion/contraction controls. The tests were conducted with temperature changes (T) at the soil-concrete interface of -18, 0, and +20 degrees C. The radial expansion and contraction displacements (D) were +120 and -120m, respectively. Tests were conducted at different interface horizontal normal stresses and numbers of cycles. This paper focuses on summarizing the results of 16 tests: 6 conducted with temperature changes and cycles, 8 with radial displacement change and cycles only, and 4 with combined temperature and displacement cycles. When the soil-concrete interface was subjected to combined radial displacement and temperature cycles, the interface shear strength experienced significant changes. Therefore, it was concluded that the intermittent operation of heat pumps connected to energy piles installed in normally consolidated clayey soils has a significant effect on shaft resistance.
机译:热活性结构(例如能量堆)用于建筑物的加热和冷却,由于地源热泵的间歇性运行,它们在建筑物和周围土壤中产生每日温度变化和循环。对于能量桩,每日的温度变化和循环会导致桩的轴向和径向循环位移(膨胀和收缩),并改变土壤特性。在这项研究中,使用了一个全自动的改进的热钻孔剪切试验(modified-TBST)装置对正常固结的黏土进行了试验,以研究温度循环(TC)和径向膨胀/收缩位移循环(RDC)对土体的影响。土壤-能量桩相互作用。除了直接测量切应力-垂直位移曲线(t-z曲线)外,还监测了不同位置的土壤温度和孔隙压力。全自动的改进型TBST设备使用两个混凝土板通过温度和膨胀/收缩控制来模拟桩表面。在土壤-混凝土界面的温度变化(T)为-18、0和+20摄氏度的条件下进行测试。径向膨胀和收缩位移(D)分别为+120和-120m。在不同的界面水平法向应力和循环次数下进行了测试。本文着重总结16个测试的结果:6个是在温度变化和循环的情况下进行的,8个是在径向位移变化和循环的情况下进行的,另外4个是在温度和位移循环的组合下进行的。当土壤-混凝土界面受到径向位移和温度循环的共同作用时,界面抗剪强度发生了显着变化。因此,得出的结论是,与安装在正常固结的黏土中的能量桩相连的热泵的间歇运行对竖井阻力具有重大影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号