...
首页> 外文期刊>Journal of Geodesy >Multi-GNSS triple-frequency differential code bias (DCB) determination with precise point positioning (PPP)
【24h】

Multi-GNSS triple-frequency differential code bias (DCB) determination with precise point positioning (PPP)

机译:具有精确点定位的多GNSS三频差分码偏置(DCB)确定(PPP)

获取原文
获取原文并翻译 | 示例
           

摘要

Differential code biases (DCBs) account for the most significant systematical biases when sensing the earth's ionosphere with GNSS observations and are also important correction parameters in GNSS applications of positioning, navigation and timing. With the continuous modernization of the American GPS and Russian GLONASS systems, and also the rapid developments of the European Galileo and Chinese BeiDou systems, there is a strong demand of precise satellite DCB products for multiple constellations and frequencies. This study proposes a new method for the precise determination of multi-GNSS triple-frequency DCBs, which can be divided into three steps. The first step is to precisely retrieve slant ionospheric delays and additional code biases based on a newly established full-rank triple-frequency precise point positioning (PPP) model with raw observations. Both the slant ionospheric delays and additional code biases containing the DCBs need to be estimated. Then, an enhanced IGGDCB (IGG stands for Institute of Geodesy and Geophysics) method is used to estimate the DCBs between the first and second frequency bands with the PPP-derived slant ionospheric delays. At last, the previously estimated DCBs between the first and second frequency bands are substituted into the additional code biases and DCBs between the first and third frequency bands are estimated. Multi-GNSS slant ionospheric delays from the triple-frequency PPP method are compared with those from the traditional dual-frequency carrier-to-code level (CCL) method, in terms of formal precision and zero-baseline experiment. Quad-system average formal precisions are 0.08 and 0.41 TECU, for PPP and CCL methods, respectively, indicating the obvious improvements of PPP over CCL. One month of data from 60 globally distributed multi-GNSS experiment stations are selected, and totally eight types of DCBs are estimated for GPS, GLONASS, Galileo and BeiDou. Multi-GNSS satellite DCBs generated with the proposed method are compared with the products from different agencies, including Center for Orbit Determination in Europe (CODE), Deutsches zentrum fur Luft-und Raumfahrt (DLR) and Chinese Academy of Sciences (CAS). For GPS C1WC2W DCBs, RMS values with respect to CODE products are 0.24, 0.07 and 0.09ns for DLR, CAS and IGG (this study), respectively. RMS values are 0.31/0.25 and 0.19/0.15ns, for GPS C1WC5X and C1WC5Q DCBs and with respect to DLR/CAS, respectively. For GLONASS C1PC2P DCBs, RMS values with respect to CODE are 0.68, 0.49 and 0.33ns for DLR, CAS and IGG, respectively. For Galileo, RMS values are 0.16/0.20 and 0.13/0.14ns, for C1XC5X and C1XC7X DCBs and with respect to DLR/CAS, respectively. For BeiDou, RMS values are 0.32/0.25 and 0.34/0.41, for C2IC7I and C2IC6I DCBs and with respect to DLR/CAS. These results show that the proposed method can provide multi-GNSS and multi-frequency satellite DCB estimation with high precision, processing efficiency and flexibility.
机译:差分码偏差(DCBS)占据地球对电离层与GNSS观测的最重要的系统偏差,并且在GNSS的定位,导航和时序的应用中也是重要的校正参数。随着美国GPS和俄罗斯GLONASS系统的不断现代化,以及欧洲伽利略和中国北斗系统的快速发展,对多个星座和频率的精确卫星DCB产品有了很强的需求。本研究提出了一种新方法,用于精确确定多GNSS三频DCBS,其可分为三个步骤。第一步是基于具有原始观察的新建立的全级三频精密点定位(PPP)模型精确地检索倾斜电离层延迟和附加码偏差。需要估计倾斜电离层延迟和包含DCB的附加额定偏差。然后,使用增强的IGGDCB(Geodesy研究所和地球物理学研究所)方法来估计具有PPP衍生的倾斜电离层延迟的第一和第二频带之间的DCB。最后,第一和第二频带之间的先前估计的DCB被代入附加的码偏差,并且估计第一和第三频带之间的DCB。在正式精度和零基线实验方面,将来自三频PPP方法的多GNSS倾斜电离层延迟与来自传统的双频载体到码水平(CCL)方法的延迟进行比较。 Quad-System的平均正式精度分别为0.08和0.41 TECU,分别用于PPP和CCL方法,表明PPP通过CCL的显而易见。选择来自60个全局分布式多GNSS实验站的一个月数据,估计GPS,Glonass,Galileo和Beidou的全部八种DCB。使用该方法产生的多GNSS卫星DCB与不同机构的产品进行比较,包括欧洲(代码)的轨道测定中心,Deutsches Zentrum Fur Luft-und Raumfahrt(DLR)和中国科学院(CAS)。对于GPS C1WC2W DCBS,分别用于代码产品的RMS值分别为DLR,CAS和IgG(本研究)分别为0.24,0.07和0.09NS。 RMS值分别为GPS C1WC5X和C1WC5Q DCB,分别为0.31 / 0.25和0.19 / 0.15ns,分别相对于DLR / CAS。对于Glonass C1PC2P DCBS,分别相对于代码的RMS值分别为0.68,0.49和0.33ns,分别用于DLR,CAS和IgG。对于伽利略,对于C1XC5X和C1XC7X DCB,RMS值分别为0.16 / 0.20和0.13 / 0.14ns,分别相对于DLR / CAS。对于北斗,RMS值为0.32 / 0.25和0.34 / 0.41,用于C2IC7i和C2IC6i DCB和关于DLR / CAS。这些结果表明,该方法可以提供多GNSS和多频卫星DCB估计,具有高精度,加工效率和灵活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号