首页> 外文期刊>Journal of Geodesy >Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination
【24h】

Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination

机译:LEO GPS接收器天线的相位中心建模及其对精确轨道确定的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Most satellites in a low-Earth orbit (LEO) with demanding requirements on precise orbit determination (POD) are equipped with on-board receivers to collect the observations from Global Navigation Satellite systems (GNSS), such as the Global Positioning System (GPS). Limiting factors for LEO POD are nowadays mainly encountered with the modeling of the carrier phase observations, where a precise knowledge of the phase center location of the GNSS antennas is a prerequisite for high-precision orbit analyses. Since 5 November 2006 (GPS week 1400), absolute instead of relative values for the phase center location of GNSS receiver and transmitter antennas are adopted in the processing standards of the International GNSS Service (IGS). The absolute phase center modeling is based on robot calibrations for a number of terrestrial receiver antennas, whereas compatible antenna models were subsequently derived for the remaining terrestrial receiver antennas by conversion (from relative corrections), and for the GNSS transmitter antennas by estimation. However, consistent receiver antenna models for space missions such as GRACE and TerraSAR-X, which are equipped with non-geodetic receiver antennas, are only available since a short time from robot calibrations. We use GPS data of the aforementioned LEOs of the year 2007rntogether with the absolute antenna modeling to assess the presently achieved accuracy from state-of-the-art reduced-dynamic LEO POD strategies for absolute and relative navigation. Near-field multipath and cross-talk with active GPS occultation antennas turn out to be important and significant sources for systematic carrier phase measurement errors that are encountered in the actual spacecraft environments. We assess different methodologies for the in-flight determination of empirical phase pattern corrections for LEO receiver antennas and discuss their impact on POD. By means of independent K-band measurements, we show that zero-difference GRACE orbits can be significantly improved from about 10 to 6 mm K-band standard deviation when taking empirical phase corrections into account, and assess the impact of the corrections on precise baseline estimates and further applications such as gravity field recovery from kinematic LEO positions.
机译:低地球轨道(LEO)中对精确轨道确定(POD)要求苛刻的大多数卫星都配备了机载接收器,以收集来自全球导航卫星系统(GNSS)的观测数据,例如全球定位系统(GPS) 。如今,主要在载波相位观测模型中遇到LEO POD的限制因素,其中精确了解GNSS天线的相位中心位置是进行高精度轨道分析的先决条件。自2006年11月5日(GPS周1400)以来,国际GNSS服务(IGS)的处理标准采用了GNSS接收器和发射器天线的相位中心位置的绝对值而不是相对值。绝对相位中心建模基于对多个地面接收器天线的机器人校准,而随后通过转换(通过相对校正)为其余地面接收器天线以及通过估算为GNSS发射器天线得出了兼容的天线模型。但是,配备有非大地接收天线的GRACE和TerraSAR-X等太空任务的一致接收器天线模型仅在距机器人校准很短的时间内可用。我们将2007年上述LEO的GPS数据与绝对天线建模一起使用,从用于绝对和相对导航的最新动态降动态LEO POD策略评估当前实现的精度。有源GPS掩星天线的近场多径和串扰被证明是实际航天器环境中遇到的系统性载波相位测量误差的重要和重要来源。我们评估飞行中确定LEO接收器天线的经验相位模式校正的不同方法,并讨论它们对POD的影响。通过独立的K波段测量,我们表明,在考虑经验相位校正的情况下,零差GRACE轨道可以从大约10 mm到6 mm K波段标准偏差得到显着改善,并且评估了这些校正对精确基准的影响估计和进一步的应用,例如从运动LEO位置恢复重力场。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号