首页> 外文期刊>Journal of General Physiology >A Na~+ Channel Mutation Linked to Hypokalemic Periodic Paralysis Exposes a Proton-selective Gating Pore
【24h】

A Na~+ Channel Mutation Linked to Hypokalemic Periodic Paralysis Exposes a Proton-selective Gating Pore

机译:与低钾性周期性麻痹相关的Na〜+通道突变暴露质子选择性门控孔。

获取原文
获取原文并翻译 | 示例
           

摘要

The heritable muscle disorder hypokalemic periodic paralysis (HypoPP) is characterized by attacks of flaccid weakness, brought on by sustained sarcolemmal depolarization. HypoPP is genetically linked to missense mutations at charged residues in the S4 voltage-sensing segments of either CaV1.1 (the skeletal muscle L-type Ca~(2+) channel) or NaV1.4 (the skeletal muscle voltage-gated Na~+ channel). Although these mutations alter the gating of both channels, these functional defects have proven insufficient to explain the sarcolemmal depolarization in affected muscle. Recent insight into the topology of the S4 voltage-sensing domain has aroused interest in an alternative pathomechanism, wherein HypoPP mutations might generate an aberrant ionic leak conductance by unblocking the putative aqueous crevice ("gating-pore") in which the S4 segment resides. We tested the rat isoform of NaV1.4 harboring the HypoPP mutation R669H (human R669H ortholog) at the outermost arginine of S4 in domain II for a gating-pore conductance. We found that the mutation R663H permits transmembrane permeation of protons, but not larger cations, similar to the conductance displayed by histidine substitution at Shaker K~+ channel S4 sites. These results are consistent with the notion that the outermost charged residue in the DIIS4 segment is simultaneously accessible to the cytoplasmic and extracellular spaces when the voltage sensor is positioned inwardly. The predicted magnitude of this proton leak in mature skeletal muscle is small relative to the resting K~+ and Cl~- conductances, and is dius not likely to fully account for the aberrant sarcolemmal depolarization underlying the paralytic attacks. Rather, it is possible that a sustained proton leak may contribute to instability of V_REST indirectly, for instance, by interfering with intracellular pH homeostasis.
机译:遗传性肌肉疾病低钾性周期性麻痹(HypoPP)的特征是持续性肌膜去极化导致松弛性肌无力。 HypoPP与CaV1.1(骨骼肌L型Ca〜(2+)通道)或NaV1.4(骨骼肌电压门控Na〜)的S4电压感测片段中带电残基的错义突变遗传相关。 +频道)。尽管这些突变改变了两个通道的门控,但已证明这些功能缺陷不足以解释受影响肌肉的肌膜去极化。对S4电压感测域拓扑的最新见解引起了对另一种病理机制的兴趣,其中HypoPP突变可能会通过疏通S4段所在的假定含水缝隙(“门控孔”)而产生异常的离子泄漏电导。我们测试了在域II中S4的最外端精氨酸处带有HypoPP突变R669H(人R669H直系同源物)的NaV1.4的大鼠同种型的门控孔传导。我们发现,突变体R663H允许质子跨膜渗透,但不允许较大的阳离子渗透,类似于在Shaker K〜+通道S4位点被组氨酸取代所显示的电导。这些结果与以下观念一致:当电压传感器向内放置时,DIIS4区段中最外面的带电残基可同时进入细胞质和细胞外空间。相对于静止的K +和Cl_-电导,在成熟骨骼肌中这种质子泄漏的预测幅度很小,并且不可能完全解释麻痹性发作背后的异常肌膜去极化作用。而是,持续的质子泄漏有可能间接地导致V_REST的不稳定性,例如,通过干扰细胞内pH稳态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号