首页> 外文期刊>Journal of Fusion Energy >Progress of Experimental Studies in the HL-2A Tokamak
【24h】

Progress of Experimental Studies in the HL-2A Tokamak

机译:HL-2A Tokamak实验研究进展

获取原文
获取原文并翻译 | 示例
       

摘要

During the last several years, the HL-2A experiment has made significant progress in the following areas: (1) lower-hybrid wave (LHW) heating and current drive, (2) plasma confinement and turbulent transport, (3) magnetohydrodynamic (MHD) instabilities and energetic particle physics and (4) H-mode and edge localized mode (ELM) control. The results show that the LHW system working in the co-current mode can reach higher driving efficiency and full non-inductive lower-hybrid current drive (LHCD) has been achieved. The intrinsic poloidal torque characterized by the divergence of the residual stress is deduced from synthesis for the first time. The dynamics of spectral symmetry breaking in drift wave turbulence is in good agreement with the development of the poloidal torque to drive the edge poloidal flow. The influence of the cross-phase dynamics on turbulent stress was also investigated. The ion internal transport barrier has been observed in the NBI-heated plasma, and inside the barrier the ion thermal transport is reduced to the neoclassical level. Besides, micro-turbulence is modulated by the rotation frequency of the magnetic island, and this modulation effect is related to a critical island width. Strong E x B shear is found at the island boundary. Three kinds of axisymmetric modes, beta-induced Alfven eigenmode (BAE), toroidal Alfven eigenmode (TAE) and the ellipticity-induced Alfven eigenmode (EAE), are found to be driven unstable by nonlinear mode coupling between Alfven eigenmodes and tearing mode which is well explained by the nonlinear gyrokinetic theory. The fishbone and tearing modes were actively controlled by the electron cyclotron resonance heating (ECRH). The dynamics of the edge plasma flows and turbulence during the L-I-H transition have been dedicatedly investigated. The geodesic acoustic mode (GAM) and limit cycle oscillation (LCO) coexist for a short time and disappear in the H-mode plasma with the increasing of E x B shear flow before the I-H transition, which plays an important role in the turbulence suppression. Different techniques, such as LHW, ECRH, resonant magnetic perturbation (RMP), and impurity seeding by the laser blow-off (LBO) and supersonic molecular beam injection (SMBI), have been successfully applied to control the large ELMs. It has been found that pedestal turbulence enhancement might be responsible for the observed mitigation effect.
机译:在过去几年中,HL-2A实验在以下领域取得了重大进展:(1)较低的混合波(LHW)加热和电流驱动,(2)等离子体限制和湍流运输,(3)磁流动力学(MHD )稳定性和能量粒子物理和(4)H模式和边缘局部模式(ELM)控制。结果表明,在共流模式下工作的LHW系统可以达到更高的驱动效率,并且已经实现了全面的非电感下闭合电流驱动器(LHCD)。其特征在于残留应力分散的固有面对子扭矩首次推导出来。漂移波湍流中断裂对称性的动态与波形扭矩的开发良好,以驱动边缘扭矩。还研究了交叉相位动力学对湍流应力的影响。在NBI加热的等离子体中观察到离子内部传输屏障,并且在阻挡层内,离子热传输减少到新古典水平。此外,通过磁岛的旋转频率调制微湍流,该调制效果与临界岛宽度有关。在岛边界发现强e x b剪切。发现三种轴对称模式,Beta诱导的Alfven特征模型(BAE),环形Alfven特征模型(TAE)和椭圆形诱导的Alfven特征模型(EAE)被Alfven特征模码与撕裂模式之间的非线性模式耦合不稳定。很好地解释了非线性旋转理论。通过电子回旋共振加热(ECRH)主动控制鱼缸和撕裂模式。已经致力于研究L-I-H转换期间边缘等离子体流量和湍流的动态。测地声模式(GAM)和极限循环振荡(LCO)在短时间内共存,在H模式等离子体中消失,随着IH转换前的e X B剪切流量的增加,在湍流抑制中起着重要作用。已经成功地应用了不同技术,例如LHW,ECRH,共振磁性扰动(RMP)和激光吹扫(LBO)和超声分子束注射(SMBI)的杂质播种以控制大榆树。已经发现基座湍流增强可能对观察到的缓解效果负责。

著录项

  • 来源
    《Journal of Fusion Energy》 |2020年第6期|313-335|共23页
  • 作者单位

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

    Southwestern Inst Phys POB 432 Chengdu 610041 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    HL-2A; Plasma confinement and turbulent transport; MHD; Energetic particle; H-mode; Edge localized mode;

    机译:HL-2A;等离子体限制和湍流运输;MHD;能量粒子;H模式;边缘本地化模式;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号