...
首页> 外文期刊>Journal of Experimental Botany >Effects of elevated root zone CO2 and air temperature on photosynthetic gas exchange, nitrate uptake, and total reduced nitrogen content in aeroponically grown lettuce plants
【24h】

Effects of elevated root zone CO2 and air temperature on photosynthetic gas exchange, nitrate uptake, and total reduced nitrogen content in aeroponically grown lettuce plants

机译:根区CO 2 升高和空气温度对气生莴苣植物光合气体交换,硝酸盐吸收和总氮含量降低的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Effects of elevated root zone (RZ) CO2 and air temperature on photosynthesis, productivity, nitrate (NO3–), and total reduced nitrogen (N) content in aeroponically grown lettuce plants were studied. Three weeks after transplanting, four different RZ [CO2] concentrations [ambient (360 ppm) and elevated concentrations of 2000, 10 000, and 50 000 ppm] were imposed on plants grown at two air temperature regimes of 28 °C/22 °C (dayight) and 36 °C/30 °C. Photosynthetic CO2 assimilation (A) and stomatal conductance (gs) increased with increasing photosynthetically active radiation (PAR). When grown at 28 °C/22 °C, all plants accumulated more biomass than at 36 °C/30 °C. When measured under a PAR ≥600 μmol m−2 s−1, elevated RZ [CO2] resulted in significantly higher A, lower gs, and higher midday leaf relative water content in all plants. Under elevated RZ [CO2], the increase of biomass was greater in roots than in shoots, causing a lower shoot/root ratio. The percentage increase in growth under elevated RZ [CO2] was greater at 36 °C/30 °C although the total biomass was higher at 28 °C/22 °C. NO3– and total reduced N concentrations of shoot and root were significantly higher in all plants under elevated RZ [CO2] than under ambient RZ [CO2] of 360 ppm at both temperature regimes. At each RZ [CO2], NO3– and total reduced N concentration of shoots were greater at 28 °C/22 °C than at 36 °C/30 °C. At all RZ [CO2], roots of plants at 36 °C/30 °C had significantly higher NO3– and total reduced N concentrations than at 28 °C/22 °C. Since increased RZ [CO2] caused partial stomatal closure, maximal A and maximal gs were negatively correlated, with a unique relationship for each air temperature. However, across all RZ [CO2] and temperature treatments, there was a close correlation between maximal A and total shoot reduced N concentration of plants under different RZ [CO2], indicating that increased A under elevated RZ [CO2] could partially be due to the higher shoot total reduced N.
机译:根区(RZ)CO 2 和空气温度对光合作用,生产力,硝酸盐(NO 3 )和总还原氮的影响研究了气生生菜植物中的(N)含量。移植后三周,对两种空气温度下生长的植物施加了四种不同的RZ [CO 2 ]浓度[环境(360 ppm)和2000、10000和50000 ppm的升高浓度] 28°C / 22°C(白天/晚上)和36°C / 30°C的温度。随着光合有效辐射(PAR)的增加,光合CO 2 同化(A)和气孔导度(g s )增加。在28°C / 22°C下生长时,与36°C / 30°C相比,所有植物积累的生物量更多。在PAR≥600μmolm −2 s -1 下测量时,RZ [CO 2 ]升高会导致A显着升高,g降低 s ,以及所有植物中较高的中午叶片相对含水量。在升高的RZ [CO 2 ]下,根部生物量的增加大于芽中的生物量,导致芽/根比降低。尽管总生物量在28°C / 22°C时较高,但在RZ [CO 2 ]升高的条件下,生长量的增加百分比更大。在升高的RZ [CO 2 ]下所有植物中NO 3 以及茎和根的总减少N浓度均显着高于环境RZ下在两种温度下,[CO 2 ]均为360 ppm。在每个RZ [CO 2 ],NO 3 和芽的总还原氮浓度在28°C / 22°C时均大于在36°C / 30°C下。在所有RZ [CO 2 ]下,在36°C / 30°C的植物根系中NO 3 的氮含量显着较高,并且总氮减少浓度高于28°C / 22°C时的浓度。由于增加的RZ [CO 2 ]导致部分气孔关闭,因此最大A和最大g s 呈负相关,并且每个空气温度之间存在唯一关系。然而,在所有RZ [CO 2 ]和温度处理下,不同RZ [CO 2 ]下植物的最大A与总芽减少的N浓度之间存在密切的相关性。 ,表明在较高的RZ [CO 2 ]下增加的A可能部分是由于较高的芽总氮减少所致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号