首页> 外文期刊>Journal of Experimental Botany >Separating foliar physiology from morphology reveals the relative roles of vertically structured transpiration factors within red maple crowns and limitations of larger scale models
【24h】

Separating foliar physiology from morphology reveals the relative roles of vertically structured transpiration factors within red maple crowns and limitations of larger scale models

机译:将叶片生理学与形态学分开揭示了红枫树冠内垂直结构蒸腾因子的相对作用以及大型模型的局限性

获取原文
获取原文并翻译 | 示例
       

摘要

A spatially explicit mechanistic model, MAESTRA, was used to separate key parameters affecting transpiration to provide insights into the most influential parameters for accurate predictions of within-crown and within-canopy transpiration. Once validated among Acer rubrum L. genotypes, model responses to different parameterization scenarios were scaled up to stand transpiration (expressed per unit leaf area) to assess how transpiration might be affected by the spatial distribution of foliage properties. For example, when physiological differences were accounted for, differences in leaf width among A. rubrum L. genotypes resulted in a 25% difference in transpiration. An in silico within-canopy sensitivity analysis was conducted over the range of genotype parameter variation observed and under different climate forcing conditions. The analysis revealed that seven of 16 leaf traits had a ≥5% impact on transpiration predictions. Under sparse foliage conditions, comparisons of the present findings with previous studies were in agreement that parameters such as the maximum Rubisco-limited rate of photosynthesis can explain ∼20% of the variability in predicted transpiration. However, the spatial analysis shows how such parameters can decrease or change in importance below the uppermost canopy layer. Alternatively, model sensitivity to leaf width and minimum stomatal conductance was continuous along a vertical canopy depth profile. Foremost, transpiration sensitivity to an observed range of morphological and physiological parameters is examined and the spatial sensitivity of transpiration model predictions to vertical variations in microclimate and foliage density is identified to reduce the uncertainty of current transpiration predictions.
机译:使用空间显式力学模型MAESTRA来分离影响蒸腾作用的关键参数,以深入了解最有影响力的参数,以准确预测冠内和冠层内的蒸腾作用。一旦在Acer rubrum L.基因型中得到验证,就可以将对不同参数化方案的模型响应按比例放大以达到蒸腾作用(每单位叶面积表示),以评估蒸腾作用如何受到叶片特性的空间分布的影响。例如,当考虑到生理差异时,红曲霉基因型之间的叶宽差异导致蒸腾差异25%。在观察到的基因型参数变化的范围内以及在不同的气候强迫条件下,进行了计算机内部的冠层内部敏感性分析。分析表明,16个叶片性状中的7个对蒸腾预测的影响≥5%。在稀疏的叶子条件下,本研究结果与先前研究的比较表明,诸如最大Rubisco限制的光合作用速率等参数可以解释约20%的预计蒸腾量变化。但是,空间分析显示了此类参数如何在最上层的树冠层下方降低或改变重要性。另外,模型对叶片宽度和最小气孔导度的敏感性沿垂直冠层深度剖面是连续的。首先,检查对观察到的形态和生理参数范围的蒸腾敏感性,并确定蒸腾模型预测对微气候和树叶密度的垂直变化的空间敏感性,以减少当前蒸腾预测的不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号