首页> 外文期刊>Journal of Experimental Botany >Overexpression of AtOGG1, a DNA glycosylase/AP lyase, enhances seed longevity and abiotic stress tolerance in Arabidopsis
【24h】

Overexpression of AtOGG1, a DNA glycosylase/AP lyase, enhances seed longevity and abiotic stress tolerance in Arabidopsis

机译:DNA糖基化酶/ AP裂解酶AtOGG1的过表达提高了拟南芥的种子寿命和非生物胁迫耐受性

获取原文
获取原文并翻译 | 示例
           

摘要

Reactive oxygen species (ROS) are toxic by-products generated continuously during seed desiccation, storage, and germination, resulting in seed deterioration and therefore decreased seed longevity. The toxicity of ROS is due to their indiscriminate reactivity with almost any constituent of the cell, such as lipids, proteins, and DNA. The damage to the genome induced by ROS has been recognized as an important cause of seed deterioration. A prominent DNA lesion induced by ROS is 7,8-dihydro-8-oxoguanine (8-oxo-G), which can form base pairs with adenine instead of cytosine during DNA replication and leads to GC→TA transversions. In Arabidopsis, AtOGG1 is a DNA glycosylase/apurinic/apyrimidinic (AP) lyase that is involved in base excision repair for eliminating 8-oxo-G from DNA. In this study, the functions of AtOGG1 were elaborated. The transcript of AtOGG1 was detected in seeds, and it was strongly up-regulated during seed desiccation and imbibition. Analysis of transformed Arabidopsis protoplasts demonstrated that AtOGG1–yellow fluorescent protein fusion protein localized to the nucleus. Overexpression of AtOGG1 in Arabidopsis enhanced seed resistance to controlled deterioration treatment. In addition, the content of 8-hydroxy-2′-deoxyguanosine (8-oxo-dG) in transgenic seeds was reduced compared to wild-type seeds, indicating a DNA damage-repair function of AtOGG1 in vivo. Furthermore, transgenic seeds exhibited increased germination ability under abiotic stresses such as methyl viologen, NaCl, mannitol, and high temperatures. Taken together, our results demonstrated that overexpression of AtOGG1 in Arabidopsis enhances seed longevity and abiotic stress tolerance.
机译:活性氧(ROS)是在种子干燥,储存和发芽过程中连续产生的有毒副产物,导致种子变质并因此降低了种子的寿命。 ROS的毒性归因于它们与几乎任何细胞成分(如脂质,蛋白质和DNA)的不加区别的反应性。 ROS引起的基因组损伤被认为是造成种子变质的重要原因。 ROS引起的一个突出的DNA损伤是7,8-二氢-8-氧鸟嘌呤(8-oxo-G),它在DNA复制过程中可以与腺嘌呤而不是胞嘧啶形成碱基对,并导致GC→TA转化。在拟南芥中,AtOGG1是一种DNA糖基化酶/紫杉醇/嘧啶二酸(AP)裂解酶,参与碱基切除修复以从DNA去除8-oxo-G。在这项研究中,AtOGG1的功能进行了阐述。在种子中检测到AtOGG1的转录本,并且在种子干燥和吸收过程中强烈上调了转录本。转化拟南芥原生质体的分析表明,AtOGG1 –黄色荧光蛋白融合蛋白位于细胞核。 AtOGG1在拟南芥中的过表达增强了种子对受控退化处理的抗性。另外,与野生型种子相比,转基因种子中8-羟基-2'-脱氧鸟苷(8-氧代-dG)的含量降低,表明体内AtOGG1具有DNA损伤修复功能。此外,转基因种子在非生物胁迫(例如甲基紫精,NaCl,甘露醇和高温)下表现出更高的发芽能力。两者合计,我们的结果表明AtOGG1在拟南芥中的过表达提高了种子的寿命和非生物胁迫的耐受性。

著录项

  • 来源
    《Journal of Experimental Botany》 |2012年第11期|p.4107-4121|共15页
  • 作者单位

    1State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China 2Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China 3School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China 4Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada 5South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号