...
首页> 外文期刊>Journal of environmental engineering and science >Biological denitrification of reverse osmosis brine concentrates: I. Batch reactor and chemostat studies
【24h】

Biological denitrification of reverse osmosis brine concentrates: I. Batch reactor and chemostat studies

机译:反渗透盐水浓缩物的生物反硝化:I.分批反应器和恒化器研究

获取原文
获取原文并翻译 | 示例
           

摘要

A major technological concern with reverse osmosis in water purification, wastewater treatment, and water reclamation or recycling is the production of brine concentrates high in ammonia or nitrogen. This project addresses biological denitrification of reverse osmosis brine concentrates in a bioactive fluidized bed adsorber reactor (FBAR), accomplished in four stages. The first three stages are described in this paper, while the final stage is addressed in the companion paper (Ersever et al. 2007). The first stage optimized an FBAR to produce nitrified brine for subsequent denitrification studies. The second stage employed batch reactors to evaluate denitrification parameters such as temperature, pH, total dissolved solids, and carbon-to-nitrogen ratio. The specific denitrification rate was maximum at a temperature of 35℃, pH of 8.0, and carbon-to-nitrogen ratio of 1.8. The third stage involved chemostats to determine Monod parameters under nitrate-, nitrite-, and carbon-limiting conditions. A biokinetic model was employed to simulate chemostat dynamics and to estimate the biological parameters. The final stage entailed FBAR denitrification experiments under different hydraulic retention times, nitrate concentrations, and packing media; simultaneous denitrification and sulfate reduction were addressed. A second FBAR used in series with the first achieved an overall sulfate reduction of 99%, and a biofilter effectively removed the hydrogen sulfide generated.
机译:在水净化,废水处理以及水回收或再循环中,反渗透的主要技术问题是生产富含氨或氮的盐水浓缩液。该项目涉及生物活性流化床吸附反应器(FBAR)中反渗透盐水浓缩物的生物反硝化,分四个阶段完成。前三个阶段在本文中进行了描述,而最后阶段在随附的论文中进行了介绍(Ersever等人,2007)。第一阶段优化了FBAR,以生产硝化盐水,用于随后的反硝化研究。第二阶段采用间歇式反应器评估反硝化参数,例如温度,pH,总溶解固体和碳氮比。在35℃,pH值为8.0,碳氮比为1.8的条件下,比反硝化率最大。第三阶段涉及化学稳定剂,以确定硝酸盐,亚硝酸盐和碳限制条件下的Monod参数。采用生物动力学模型来模拟恒化器动力学并估算生物学参数。最后阶段需要在不同的水力停留时间,硝酸盐浓度和填充介质下进行FBAR反硝化实验。解决了同时反硝化和硫酸盐还原的问题。与第一个串联使用的第二个FBAR可使硫酸盐总体减少99%,生物过滤器可有效去除产生的硫化氢。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号