...
首页> 外文期刊>Journal of engineering materials and technology >Modeling Interparticle Size Effect on Deformation Behavior of Metal Matrix Composites by a Gradient Enhanced Plasticity Model
【24h】

Modeling Interparticle Size Effect on Deformation Behavior of Metal Matrix Composites by a Gradient Enhanced Plasticity Model

机译:用梯度增强塑性模型模拟颗粒间尺寸对金属基复合材料变形行为的影响

获取原文
获取原文并翻译 | 示例

摘要

Experimental tests show that particle (inclusion or precipitate) size and interparticle spacing, besides volume fraction, have a considerable effect on the macroscopic mechan ical response of metal matrix microreinforced composites. Classical (local) plasticity models unlike nonlocal gradient enhanced plasticity models cannot capture this size dependency due to the absence of a material length scale. In this paper, one form of higher-order gradient plasticity enhanced model, which is derived based on principle of virtual power and laws of thermodynamic, is employed to investigate the size effect of el liptical inclusions with different aspect ratios based on unit cell simulations. It is shown that by decreasing the particle size or equivalently the interparticle spacing (i.e., the spacing between the centers of inclusions), while keeping the volume fraction constant, the average stress-strain response is stronger and more sensitive to the inclusion s aspect ratio. However, unexpectedly, decreasing the free-path interparticle spacing (i.e., the spacing between the edges of inclusions perpendicular to the principal loading direction) does not necessarily lead to largest strengthening. This is completely dependent on the plastic strain gradient hardening due to distribution and evolution of geometrically nec essary dislocations that depend on the particle size and shape. Gradient-hardening sig nificantly alter the stress and plastic strain distributions near the particle-matrix interface.
机译:实验测试表明,颗粒(夹杂物或沉淀物)的尺寸和颗粒间的间距除体积分数外,还对金属基体微增强复合材料的宏观力学响应产生很大影响。与非局部梯度增强的可塑性模型不同,经典(局部)可塑性模型由于缺乏材料长度尺度而无法捕获这种尺寸依赖性。本文基于虚功率原理和热力学定律推导了一种形式的高阶梯度可塑性增强模型,并通过晶胞模拟研究了不同纵横比的椭圆形夹杂物的尺寸效应。结果表明,通过减小粒径或等效地减小颗粒间的间距(即夹杂物中心之间的间距),同时保持体积分数不变,平均应力-应变响应更强,并且对夹杂物的长宽比更加敏感。 。但是,出乎意料的是,减小自由程粒子间的间距(即,垂直于主载荷方向的夹杂物的边缘之间的间距)并不一定导致最大的强化。这完全取决于塑性应变梯度硬化,这归因于几何上必要的位错的分布和演化,这些位错取决于颗粒的大小和形状。梯度硬化显着地改变了颗粒-基体界面附近的应力和塑性应变分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号