...
首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Maximization of the Profit of a Complex Combined-Cycle Cogeneration Plant Using a Professional Process Simulator
【24h】

Maximization of the Profit of a Complex Combined-Cycle Cogeneration Plant Using a Professional Process Simulator

机译:使用专业的过程模拟器使复杂的联合循环热电联产厂的利润最大化

获取原文
获取原文并翻译 | 示例

摘要

The high cost of energy resources has driven a strong and continued quest for their optimal utilization. In this context, modern thermoeconomic optimization techniques have been developed to analyze and design improved energy systems, leading to a better compromise between energetic efficiency and cost. Thermoeconomic optimization can be parametric (plant configuration is fixed), applicable both at the design phase or operation phase of a system, or structural (plant configuration may vary). In practice, mathematical thermoeconomic optimization may be accomplished in two ways: (i) the conventional way, which manipulates all pertinent equations simultaneously or (ii) integrated with a professional process simulator, such that the equations are manipulated separately. In the latter case, the simulator deals with the thermodynamic property and balance equations, while an external optimization routine, linked to the simulator, deals with the economic equations and objective function. In this work, a previous implementation of an integrated approach for parametric mathematical thermoeconomic optimization of complex thermal systems is applied to an actual combined-cycle cogeneration plant located in the outskirts of the city of Rio de Janeiro in Brazil. The plant contains more than 60 thermal components, including two gas turbines, one steam turbine, and two heat recovery steam generators. Several hundred variables are required to simulate the plant at one operational steady-state. The plant produces 380 MW of power nominally, and exports a mass flow rate between 200 tons/h and 400 tons/h of superheated process steam, at 45 bars and 404℃, to a neighboring refinery. The simulator is the THERMOFLEX software, which interfaces with the Microsoft Excel program. The optimization routine is written in the Visual Basic for Applications language and is based on Powell's method. The cogeneration plant operates subjected to time-changing economic scenarios, because of varying fuel, electricity, and steam prices. Thus, to manage the plant, it is necessary to vary the operational state appropriately as the economic parameters change. For a prescribed economic scenario, previous work determined the minimum operational cost, when a fixed contracted hourly-rate of process steam was to be exported, while a variable amount of electrical power was produced. In this paper, a broader optimization problem is formulated and solved, for which the objective is to maximize the plant profit under different economic scenarios. It is shown that the optimal operating conditions depend on the economic parameters, and do not necessarily imply maximum efficiency. The integrated optimization approach proves effective, robust, and helpful for optimal plant management.
机译:能源成本高昂,促使人们不断寻求最佳利用资源。在这种情况下,已经开发出现代热经济优化技术来分析和设计改进的能源系统,从而在能量效率和成本之间取得更好的折衷。热经济优化可以是参数化的(工厂配置是固定的),可以在系统的设计阶段或操作阶段应用,也可以是结构性的(工厂配置可能有所不同)。在实践中,可以通过两种方式来实现数学热经济学优化:(i)常规方式,该方式可以同时处理所有相关方程式;或者(ii)与专业过程仿真器集成在一起,从而可以分别处理方程式。在后一种情况下,模拟器处理热力学性质和平衡方程,而与模拟器链接的外部优化例程处理经济方程和目标函数。在这项工作中,将用于复杂热系统的参数数学热经济优化的集成方法的先前实现应用于位于巴西里约热内卢市郊的实际联合循环热电联产工厂。该工厂包含60多个热力组件,包括两台燃气轮机,一台蒸汽轮机和两台热量回收蒸汽发生器。在一个运行稳态下,需要数百个变量来模拟工厂。该工厂名义上可产生380兆瓦的电力,并以45巴和404℃的质量流量输出200吨/小时至400吨/小时的过热过程蒸汽到附近的精炼厂。模拟器是THERMOFLEX软件,可与Microsoft Excel程序连接。优化例程是使用Visual Basic for Applications语言编写的,并且基于Powell的方法。由于燃料,电力和蒸汽价格的变化,热电联产厂的运营会随着经济形势的变化而变化。因此,为了管理工厂,有必要随着经济参数的变化适当地改变操作状态。对于规定的经济情景,当要输出固定的合同规定的每小时工艺蒸汽费率,同时产生可变数量的电力时,以前的工作确定了最低运营成本。本文提出并解决了一个更广泛的优化问题,其目的是在不同经济情况下最大化工厂利润。结果表明,最佳运行条件取决于经济参数,并不一定意味着最高效率。集成的优化方法被证明是有效,强大且有助于优化工厂管理的。

著录项

  • 来源
    《Journal of Engineering for Gas Turbines and Power 》 |2010年第4期| 041801.1-041801.10| 共10页
  • 作者单位

    DTE, Electric Power Research Center (CEPEL), Avenida Hum s, CP 68007, Cidade Universitaria, Rio de Janeiro 21944-970, Brazil;

    DIE, Electric Power Research Center (CEPEL), Avenida Hum s, CP 68007, Cidade Universitaria, Rio de Janeiro 21944-970, Brazil;

    DTE, Electric Power Research Center (CEPEL), Avenida Hum s, CP 68007, Cidade Universitaria, Rio de Janeiro 21944-970, Brazil;

    DEM/Politecnica/COPPE, Federal University of Rio de Janeiro (UFRJ), CT, CP 68503, Cidade Universitaria, Rio de Janeiro 21945-970, Brazil;

    Petrobras R&D Center, CENPES, Gas & Energy, Avenida Horacio Macedo 950, Cidade Universitaria, Rio de Janeiro 21941-915, Brazil;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号