首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Combustor Design Optimization Using Co-Kriging of Steady and Unsteady Turbulent Combustion
【24h】

Combustor Design Optimization Using Co-Kriging of Steady and Unsteady Turbulent Combustion

机译:基于稳态和非稳态湍流燃烧共同克里金的燃烧器设计优化

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In the gas turbine industry, computational fluid dynamics (CFD) simulations are often used to predict and visualize the complex reacting flow dynamics, combustion environment and emissions performance of a combustor at the design stage. Given the complexity involved in obtaining accurate flow predictions and due to the expensive nature of simulations, conventional techniques for CFD based combustor design optimization are often ruled out, primarily due to the limits on available computing resources and time. The design optimization process normally requires a large number of analyses of the objective and constraint functions which necessitates a careful selection of fast, reliable and efficient computational methods for the CFD analysis and the optimization process. In this study, given a fixed computational budget, an assessment of a co-Kriging based optimization strategy against a standard Kriging based optimization strategy is presented for the design of a 2D combustor using steady and unsteady Reynolds-averaged Navier Stokes (RANS) formulation. Within the fixed computational budget, using a steady RANS formulation, the Kriging strategy successfully captures the underlying response; however with unsteady RANS the Kriging strategy fails to capture the underlying response due to the existence of a high level of noise. The co-Kriging strategy is then applied to two design problems, one using two levels of grid resolutions in a steady RANS formulation and the other using steady and unsteady RANS formulations on the same grid resolution. With the co-Kriging strategy, the multifidelity analysis is expected to find an optimum design in comparatively less time than that required using the high-fidelity model alone since less high-fidelity function calls should be required. However, using the applied computational setup for co-Kriging, the Kriging strategy beats the co-Kriging strategy under the steady RANS formulation whereas under the unsteady RANS formulation, the high level of noise stalls the co-Kriging optimization process.
机译:在燃气轮机行业中,计算流体动力学(CFD)模拟通常用于预测和可视化设计阶段燃烧器的复杂反应流动力学,燃烧环境和排放性能。考虑到获得准确的流量预测所涉及的复杂性,并且由于模拟的昂贵性质,主要由于可用计算资源和时间的限制,通常会排除基于CFD的燃烧器设计优化的常规技术。设计优化过程通常需要对目标函数和约束函数进行大量分析,因此有必要仔细选择快速,可靠和高效的CFD分析和优化过程计算方法。在这项研究中,在给定固定计算预算的情况下,针对使用稳态和非稳态雷诺平均Navier Stokes(RANS)公式设计2D燃烧室,提出了基于协同Kriging优化策略与基于标准Kriging优化策略的评估。在固定的计算预算范围内,使用稳定的RANS公式,克里格策略成功地捕获了潜在的响应。但是,由于RANS不稳定,由于存在高水平的噪声,Kriging策略无法捕获潜在的响应。然后,将共同克里格策略应用于两个设计问题,一个在稳定的RANS公式中使用两个级别的网格分辨率,另一个在相同的网格分辨率中使用稳定和非稳定的RANS公式。使用协同克里格策略,与只使用高保真模型所需的时间相比,预计多保真度分析将在相对较短的时间内找到最佳设计,因为需要较少的高保真函数调用。然而,使用用于共同克里格的应用计算设置,在稳定RANS公式下,克里格策略优于共同克里格策略,而在不稳定RANS公式下,高水平的噪声使共同克里格优化过程停滞不前。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号