首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >NO Prediction in Turbulent Diffusion Flame Using Multiple Unsteady Laminar Flamelet Modeling
【24h】

NO Prediction in Turbulent Diffusion Flame Using Multiple Unsteady Laminar Flamelet Modeling

机译:使用多个非定常层流小火焰模型预测湍流扩散火焰中的NO

获取原文
获取原文并翻译 | 示例
       

摘要

The steady laminar flamelet model (SLFM) (Peters, 1984, "Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion," Prog. Energy Combust. Sci., 10(3), pp. 319-339; Peters, 1986, "Laminar Flamelet Concepts in Turbulent Combustion," Symp. (Int.) Combust., 21(1), pp. 1231-1250) has been shown to be reasonably good for the predictions of mean temperature and the major species in turbulent flames (Borghi, 1988, "Turbulent Combustion Modeling," Prog. Energy Combust. Sci., 14(4), pp. 245-292; Veynante and Vervisch, 2002, "Turbulent Combustion Modeling," Prog. Energy Combust. Sci., 28(3), pp. 193-266). However, the SLFM approach has limitations in the prediction of slow chemistry phenomena like NO formation (Benim and Syed, 1998, "Laminar Flamelet Modeling of Turbulent Premixed Combustion," Appl. Math. Model., 22(1-2), pp. 113-136; Heyl and Bockhorn, 2001, "Flamelet Modeling of NO Formation in Laminar and Turbulent Diffusion Flames," Chemosphere, 42(5-7), pp. 449-462). In the case of SLFM, the turbulence and chemistry are coupled through a single variable called scalar dissipation, which is representative of the strain inside the flow. The SLFM is not able to respond to the steep changes in the scalar dissipation values and generally tends to approach to the equilibrium solution as the strain relaxes (Haworth et al., 1989, "The Importance of Time-Dependent Flame Structures in Stretched Laminar Flamelet Models for Turbulent Jet Diffusion Flames," Symp. (Int.) Combust., 22(1), pp. 589-597). A pollutant like NO is formed in the post flame zones and with a high residence time, where the scalar dissipation diminishes and hence the NO is overpredicted using the SLFM approach. In order to improve the prediction of slow forming species, a transient history of the scalar dissipation evolution is required. In this work, a multiple unsteady laminar flamelet approach is implemented and used to model the NO formation in two turbulent diffusion flames using detailed chemistry. In this approach, multiple unsteady flamelet equations are solved, where each flamelet is associated with its own scalar dissipation history. The time averaged mean variables are calculated from weighted average contributions from different flamelets. The unsteady laminar flamelet solution starts with a converged solution obtained from the steady laminar flamelet modeling approach. The unsteady flamelet equations are, therefore, solved as a post processing step with the frozen flow field. The domain averaged scalar dissipation for a flamelet at each time step is obtained by solving a scalar transport equation, which represents the probability of occurrence of the considered flamelet. The present work involves the study of the effect of the number of flamelets and also the different methods of probability initialization on the accuracy of NO prediction. The current model predictions are compared with the experimental data. It is seen that the NO predictions improves significantly even with a single unsteady flamelet and further improves marginally with an increase in number of unsteady flamelets.
机译:稳定层流小火焰模型(SLFM)(Peters,1984,“非预混湍流燃烧中的层流扩散小火焰模型”,Prog.Energy Combust.Sci。,第10(3),第319-339页; Peters,1986,“湍流燃烧中的层流小火焰概念,” Symp。(Int。)Combust。,21(1),pp。1231-1250)已被证明对于预测平均温度和湍流火焰中的主要物种(Borghi ,1988年,“湍流燃烧模型”,Prog.Energy Combust.Sci。,14(4),第245-292页; Veynante和Vervisch,2002年,“湍流燃烧模型”,Prog.Energy Combust.Sci。,第28(28)页。 3),第193-266页)。但是,SLFM方法在预测诸如NO生成等慢化学现象方面有局限性(Benim和Syed,1998,“湍流预混燃烧的层流小火焰建模”,应用数学模型,第22(1-2)页,第134页)。 113-136; Heyl和Bockhorn,2001年,“层流和湍流扩散火焰中NO形成的火焰模型,” Chemosphere,42(5-7),第449-462页)。在SLFM的情况下,湍流和化学反应是通过一个称为标量耗散的单个变量耦合的,该变量代表流内部的应变。 SLFM无法响应标量耗散值的急剧变化,并且通常会在应变松弛时趋于接近平衡解(Haworth等,1989,“拉伸层流小火焰中随时间变化的火焰结构的重要性“湍流射流扩散火焰的模型”,《燃烧内部理论》,第22(1)页,第589-597页。诸如NO的污染物会在火焰后区域中形成,并具有较高的停留时间,在这种情况下标量耗散会减少,因此使用SLFM方法会过度预测NO。为了改善对慢速形成物种的预测,需要标量耗散演化的瞬态历史。在这项工作中,实施了多个非稳态层流小火焰方法,并使用详细的化学方法对两个湍流扩散火焰中的NO形成进行建模。在这种方法中,求解了多个非稳态小火焰方程,其中每个小火焰与自己的标量耗散历史相关联。从不同小火焰的加权平均贡献中计算出时间平均平均值变量。非稳态层流小火焰解决方案始于从稳定层流小火焰建模方法获得的收敛解。因此,非稳定小火焰方程作为冻结流场的后处理步骤求解。通过求解标量输运方程,可以得出每个小步火焰的域平均标量耗散量,该方程表示了所考虑的小火焰出现的概率。目前的工作涉及对小火焰数量的影响以及概率初始化对NO预测准确性的不同方法的研究。将当前的模型预测与实验数据进行比较。可以看出,即使使用单个不稳定小火焰,NO预测也会显着提高,并且随着不稳定小火焰数量的增加,NO预测会略有改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号