...
首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Fluid-Structure Interaction in Combustion System of a Gas Turbine-Effect of Liner Vibrations
【24h】

Fluid-Structure Interaction in Combustion System of a Gas Turbine-Effect of Liner Vibrations

机译:燃气轮机燃烧系统中的流体-结构相互作用-衬套振动的影响

获取原文
获取原文并翻译 | 示例

摘要

Prediction of mutual interaction between flow, combustion, acoustic, and vibration phenomena occurring in a combustion chamber is crucial for the reliable operation of any combustion device. In this paper, this is studied with application to the combustion chamber of a gas turbine. Very dangerous for the integrity of a gas turbine structure can be the coupling between unsteady heat release by the flame, acoustic wave propagation, and liner vibrations. This can lead to a closed-loop feedback system resulting in mechanical failure of the combustor liner due to fatigue and fatal damage to the turbine. Experimental and numerical investigations of the process are performed on a pressurized laboratory-scale combustor. To take into account interaction between reacting flow, acoustics, and vibrations of a liner, the computational fluid dynamics (CFD) and computational structural dynamics (CSD) calculations are combined into one calculation process using a partitioning technique. Computed pressure fluctuations inside the combustion chamber and associated liner vibrations are validated with experiments performed at the state-of-the-art pressurized combustion setup. Three liner structures with different thicknesses are studied. The numerical results agree well with the experimental data. The research shows that the combustion instabilities can be amplified by vibrating walls. The modeling approach discussed in this paper allows to decrease the risk of the gas turbine failure by prediction, for given operating conditions, of the hazardous frequency at which the thermoacoustic instabilities appear.
机译:预测燃烧室内发生的流动,燃烧,声学和振动现象之间的相互影响,对于任何燃烧设备的可靠运行都是至关重要的。在本文中,将其应用于燃气轮机的燃烧室进行研究。对于燃气轮机结构的完整性而言,非常危险的是火焰不稳定释放的热量,声波传播和衬套振动之间的耦合。这可能导致闭环反馈系统,从而由于疲劳和对涡轮机的致命损害而导致燃烧室衬套机械故障。在加压实验室规模的燃烧器上进行了该过程的实验和数值研究。为了考虑衬管的反应流,声学和振动之间的相互作用,使用分区技术将计算流体动力学(CFD)和计算结构动力学(CSD)计算合并为一个计算过程。燃烧室内的压力波动和相关的衬套振动已通过在最新的加压燃烧装置上进行的实验进行了验证。研究了三种不同厚度的衬板结构。数值结果与实验数据吻合良好。研究表明,燃烧不稳定性可以通过振动壁来扩大。本文讨论的建模方法可以通过在给定的运行条件下预测热声不稳定性出现的危险频率来降低​​燃气轮机故障的风险。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号