...
首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Sensitivity of the Numerical Prediction of Turbulent Combustion Dynamics in the LIMOUSINE Combustor
【24h】

Sensitivity of the Numerical Prediction of Turbulent Combustion Dynamics in the LIMOUSINE Combustor

机译:LIMOUSINE燃烧室湍流燃烧动力学数值预测的敏感性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The objective of this study is to investigate the sensitivity and accuracy of the reaction flow-field prediction for the LIMOUSINE combustor with regard to choices in computational mesh and turbulent combustion model. The LIMOUSINE combustor is a partially premixed, bluff body-stabilized natural gas combustor designed to operate at 40-80 kW and atmospheric pressure and used to study combustion instabilities. The transient simulation of a turbulent combusting flow with the purpose to study thermoacoustic instabilities is a very time-consuming process. For that reason, the meshing approach leading to accurate numerical prediction, known sensitivity, and minimized amount of mesh elements is important. Since the numerical dissipation (and dispersion) is highly dependent on, and affected by, the geometrical mesh quality, it is of high importance to control the mesh distribution and element size across the computational domain. Typically, the structural mesh topology allows using much fewer grid elements compared to the unstructured grid; however, an unstructured mesh is favorable for flows in complex geometries. To explore computational stability and accuracy, the numerical dissipation of the cold flow with mixing of fuel and air is studied first in the absence of the combustion process. Thereafter, the studies are extended to combustible flows using standard available ansys-cfx combustion models. To validate the predicted variable fields of the combustor's transient reactive flows, the numerical results for dynamic pressure and temperature variations, resolved under structured and unstructured mesh conditions, are compared with experimental data. The obtained results show minor dependence on the used mesh in the velocity and pressure profiles of the investigated grids under nonreacting conditions. More significant differences are observed in the mixing behavior of air and fuel flows. Here, the numerical dissipation of the (unstructured) tetrahedral mesh topology is higher than in the case of the (structured) hexahedral mesh. For that reason, the combusting flow, resolved with the use of the hexahedral mesh, presents better agreement with experimental data and demands less computational effort. Finally, in the paper, the performance of the combustion model for reacting flow is presented and the main issues of the applied combustion modeling are reviewed.
机译:这项研究的目的是针对计算网格和湍流燃烧模型的选择,研究LIMOUSINE燃烧室反应流场预测的灵敏度和准确性。 LIMOUSINE燃烧器是部分预混合的,钝体稳定的天然气燃烧器,设计用于在40-80 kW和大气压下运行,用于研究燃烧不稳定性。为了研究热声不稳定性,湍流燃烧流的瞬态模拟是一个非常耗时的过程。由于这个原因,导致精确数值预测,已知灵敏度和最小化网格元素数量的网格划分方法很重要。由于数值耗散(和色散)高度依赖于几何网格质量,并受其影响,因此在整个计算域中控制网格分布和元素大小非常重要。通常,与非结构化网格相比,结构化网格拓扑允许使用更少的网格元素。但是,非结构化网格对于复杂几何形状的流动是有利的。为了探索计算的稳定性和准确性,首先研究了在没有燃烧过程的情况下,混合燃料和空气的冷流的数值耗散。此后,使用标准可用的ansys-cfx燃烧模型将研究扩展到可燃流。为了验证燃烧器瞬态反应流的预测变量场,将在结构化和非结构化网格条件下解析得到的动态压力和温度变化的数值结果与实验数据进行了比较。获得的结果表明,在非反应条件下,所研究网格的速度和压力曲线对所使用的网格的依赖性较小。在空气和燃料流的混合行为中观察到了更大的差异。在此,(非结构化)四面体网格拓扑的数值耗散高于(结构化)六面体网格的情况。因此,使用六面体网格解决的燃烧流与实验数据更好地吻合,并且所需的计算工作更少。最后,本文给出了燃烧模型对反应流的性能,并综述了应用燃烧模型的主要问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号