...
首页> 外文期刊>Journal of Energy Storage >Numerical investigation of photovoltaic hybrid cooling system performance using the thermoelectric generator and RT25 Phase change material
【24h】

Numerical investigation of photovoltaic hybrid cooling system performance using the thermoelectric generator and RT25 Phase change material

机译:热电发电机和RT25相变材料的光伏混合冷却系统性能的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

The PV panel absorbs solar irradiation flux on its surface. Part of the absorbed flux generates electricity, and a more significant amount converts into heat. Different methods are used to maintain photovoltaic at low temperatures. Heat is transferred in all heat transfer forms conduction, convection, and radiation. In the current study, two cooling models of the photovoltaic panel are developed as active and hybrid cooling systems. The active cooling system uses thermoelectric generators for photovoltaic panel heat dissipation. The hybrid cooling system uses a thermoelectric generator and phase change material for photovoltaic panel heat dissipation. The thermoelectric generators heat sink in both active and hybrid cooling systems is the domestic water supply at average ambient temperature. The thermoelectric generator heat source is the photovoltaic temperature in the active cooling system and the phase change material temperature in the hybrid active and passive cooling system. The hybrid cooling process keeps the photovoltaic panel at a steady temperature for four hours and decreases the temperature from 332K to 295K by up to 60 %. Results show an improvement of the panel efficiency by 2.5% in fair weather and 3.5% in sunny weather. Also, electrical power generation is enhanced by 20% in fair weather and 30% in sunny weather. The effeciency enhancement of the photovoltaic panel is steady for ten hours, even under transient irradiation flux. The active cooling and hybrid cooling systems with cavity channel (CCH) and cavity capsules (CCP) show a significant improvement and stability in temperature, efficiency, and power generation.
机译:光伏面板在其表面上吸收太阳照射通量。部分吸收磁通量产生电力,更大的量转化为热量。不同的方法用于在低温下保持光伏。在所有传热形式的传热中转移热量,形成导电,对流和辐射。在目前的研究中,光伏面板的两个冷却模型被开发为主动和混合冷却系统。主动冷却系统使用热电发电机进行光伏板散热。混合冷却系统使用热电发电机和相变材料,用于光伏面板散热。热电发电机在主动和混合式冷却系统中的散热器是平均环境温度的家用供水。热电发电机热源是主动冷却系统中的光伏温度和混合动力主动和被动冷却系统中的相变材料温度。混合冷却过程将光伏板保持在稳定温度4小时,并将温度降低至332k至295k至60%。结果在晴朗的天气下,在公平的天气下将面板效率提高2.5%,晴朗的天气达到3.5%。此外,在公平的天气下,电力产生增强了20%,晴朗的天气,30%。即使在瞬态照射通量下,光伏面板的效果增强稳定为10小时。具有腔通道(CCH)和腔胶囊(CCP)的主动冷却和混合冷却系统(CCH)(CCP)在温度,效率和发电中显示出显着的改善和稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号