...
首页> 外文期刊>Journal of Energy Storage >Surface and diffusion charge contribution study of neem leaves derived porous carbon electrode for supercapacitor applications using acidic, basic, and neutral electrolytes
【24h】

Surface and diffusion charge contribution study of neem leaves derived porous carbon electrode for supercapacitor applications using acidic, basic, and neutral electrolytes

机译:使用酸性,碱性和中性电解质,Neem Leave的表面和扩散电荷贡献研究超级电容器应用的多孔碳电极

获取原文
获取原文并翻译 | 示例

摘要

Biowastes derived carbon based materials are recently gaining attention due to their extraordinary surface and conductive characteristics. Herein, neem leaves derived porous carbon (NAC) with a 3D framework and interconnected pores are synthesized which shows hierarchal pore size distribution along with good conductivity that makes it a suitable electrode material for supercapacitors. However, the surface charge contribution highly affects the electrochemical performance of the electrodes. In addition, a high fraction of surface charge contribution suggests the fast electrochemical kinetics and hence shows the ability of the electrode to work at a high charge-discharge rate. Therefore, the NAC electrode showed a maximum surface contribution of 72% in 6M KOH electrolyte as compared to 1M H2SO4 (21%) and 1M Na2SO4 (20%) electrolyte. Furthermore, the NAC electrode shows a specific capacitance value of 178 F/g using a 6M KOH electrolyte, which is much higher than 93 F/g for 1M H2SO4 and 136.7 F/g for 1M Na2SO4 electrolyte at the constant scan rate of 5 mV/s. Therefore, these results confirm that the study of surface and diffusion charge contribution gives new directions to tune the electrochemical performance of supercapacitor electrodes.
机译:由于其非凡的表面和导电特性,BioWasts衍生的碳基材料最近受到关注。这里,合成了与3D框架和相互连接的孔的衍生多孔碳(NAC)的衍生多孔碳(NAC),其表示具有良好的导电性的等级孔径分布,使其成为超级电容器的合适电极材料。然而,表面电荷贡献高度影响电极的电化学性能。此外,高分化的表面电荷贡献表明快速电化学动力学,因此显示电极以高电荷 - 放电速率工作的能力。因此,与1M H 2 SO 4(21%)和1M Na 2 SO 4(20%)电解质相比,NAC电极在6M KOH电解质中显示出72%的最大表面贡献。此外,NAC电极使用6M KOH电解质表示178f / g的特定电容值,其在5mV的恒定扫描速率下高于1M H 2 SO 4和136.7 f / g的1M H 2 SO 4和136.7 f / g / s。因此,这些结果证实,表面和扩散电荷贡献的研究提供了调整超级电容器电极的电化学性能的新方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号