首页> 外文期刊>Journal of Energy Storage >Rapid microwave-assisted vs. hydrothermal synthesis of hierarchical sheet-like NiO/NiMoO_4 hybrid nanostructures for high performance extrinsic pseudocapacitor application
【24h】

Rapid microwave-assisted vs. hydrothermal synthesis of hierarchical sheet-like NiO/NiMoO_4 hybrid nanostructures for high performance extrinsic pseudocapacitor application

机译:快速微波辅助与水热合成的分层片状NiO / NiMoo_4杂化纳米结构用于高性能外在伪孔涂料应用

获取原文
获取原文并翻译 | 示例
       

摘要

Combinations of pseudocapacitive materials such as metal oxides and metal molybdates are one of the extensively interested hybrid electrode materials for pseudocapacitor application. Various synthetic protocols along with structural parameters of the obtained products are crucial to achieve desired electrochemical properties for electrode materials. Herein, sheet-like hierarchical NiO/NiMoO4 (NNMO) hybrid nanostructures are synthesized by one-step rapid & energy saving green microwave-assisted approach (M-NNMO) and compared their physicochemical-electrochemical properties with hydrothermally synthesized H-NNMO. The as-synthesized materials are characterized by various spectroscopic and microscopic techniques. As an electroactive pseudocapacitive material, M-NNMO shows maximum specific capacity of 459.0 Cg(-1) (1147.5 Fg(-1)), while H-NNMO delivers specific capacity of 271.1 Cg(-1) (677.8 Fg(-1)) at a current density of 1 Ag-1. The superior performance of the M-NNMO is closely related to its low crystallinity, high bulk (147.9 m(2) g(-1))/electroactive surface area (26.7 cm(2)), and mesoporosity within hierarchical assembly. Furthermore, asymmetric supercapacitors are fabricated by NNMOs nanostructures as the positive and commercial activated carbon as the negative electrode. MNNMO//AC device exhibits maximum specific capacity of 203.0 Cg(-1), promising specific energy/power of 38.6 Whkg(-1)/685.2 WKg(-1), while H-NNMO//AC shows specific capacity of 169.5 Cg(-1), specific energy and power of 32.4 Whkg(-1) and 688.6 WKg(-1), respectively, at a current density of 1 Ag-1. Maximum cyclability (similar to 84% capacity retention after 2250 cycles) of H-NNMO//AC may be correlated with better crystallinity and thermal/ structural stability of H-NNMO hybrid nanostructure. Based on results, we suggest that the NNMO hybrid nanostructures can be promising electrode materials for electrochemical energy storage application.
机译:诸如金属氧化物和金属钼酸盐的假偶联材料的组合是用于假偶联机应用的广泛感兴趣的混合电极材料之一。各种合成方案以及所得产物的结构参数对于实现电极材料的所需电化学性能至关重要。这里,通过一步的快速和节能绿色微波辅助方法(M-NNMO)合成片状分层NiO / NiMoo4(NNMO)杂化纳米结构,并将其与水热合成的H-NNMO进行了与其物理化学 - 电化学性能进行了比较。作为各种光谱和微观技术的特征在于各种光谱和微观技术。作为电活性假壳材料,M-NNMO显示最大特异性容量为459.0cg(-1)(1147.5 fg(-1)),而H-NNMO可提供271.1 cg(-1)的特定容量(677.8 fg(-1) )在电流密度为1%至1。 M-NNMO的卓越性能与其低结晶度,高批量(147.9M(2)G(-1))/电活性表面积(26.7cm(2))和分级组件中的中孔隙度密切相关。此外,不对称超级电容器由NNMOS纳米结构制造,作为正极和商业活性炭作为负极。 MNNMO // AC器件的最大特定容量为203.0cg(-1),有希望的特定能量/功率为38.6 WHKG(-1)/685.2 WKG(-1),而H-NNMO // AC显示出169.5 CG的特定容量(-1),特定能量和功率分别为32.4WHKG(-1)和688.6WKG(-1),电流密度为1Ag-1。 H-NNMO // AC的最大可循环性(类似于2250次循环后的84%的容量保留)可以与H-NNMO杂交纳米结构的更好的结晶度和热/结构稳定性相关。基于结果,我们建议NNMO杂交纳米结构是用于电化学能量存储应用的有前途的电极材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号