首页> 外文期刊>Journal of Energy Storage >Solidification enhancement in triplex thermal energy storage system via triplets fins configuration and hybrid nanoparticles
【24h】

Solidification enhancement in triplex thermal energy storage system via triplets fins configuration and hybrid nanoparticles

机译:三联体翅片配置和杂交纳米粒子的三重热能储存系统中的凝固增强

获取原文
获取原文并翻译 | 示例
           

摘要

Latent thermal energy storage dependent on Phase Change Materials (PCMs) proposes a possible answer for modifying the availability of alternating energy from renewable sources such as wind and solar. They can possibly store large amounts of energy in moderately tiny dimensions as well as through almost isothermal procedures. Notwithstanding, low thermal conductivity values is a significant disadvantage of the present PCMs which critically restrict their energy storage usage. Likewise, this unacceptably decreases the solidification/ melting rates, hence causing the system response time to be excessively lengthy. The present examination accomplished a better PCM solidification rate with a combination of hybrid nanoparticle (MoS2 - Fe3O4) and novel fin configuration in triplex-tube storage. A computational model that considers the natural conduction was represented and validated against previous experimental data. The influences of applying various nanoparticle volume fractions, radiation parameter, and shape factor on the assessment of the liquid-solid interfaces, phase change rate, and solidification process time over the whole solidification procedure was calculated and reported. The outputs demonstrate that PCM solidification is becoming better by utilizing the aforementioned methods. The obtained results disclose that the radiation parameter has a significant impact on the phase change rate, which shows a 74.58% contribution to the full solidification process time (FST). Additionally, the optimum parameters have designed to optimize the full solidification process time in the triplex-tube latent heat energy storage system (LHESS) system by using the Taguchi and Response Surface Methodology (RSM) methods. As a novelty, an accurate correlation for FST is developed with sensibly great precision.
机译:潜伏的热能存储依赖于相变材料(PCM)提出了用于修改来自诸如风和太阳能的可再生能源的交替能量的可用性的可能答案。它们可以在适度的微小尺寸以及几乎是热的程序中存储大量的能量。尽管如此,低导热率值是本发明的PCM的显着缺点,其批判性地限制其能量存储使用。同样地,这种情况下不可接受地降低了凝固/熔化速率,因此导致系统响应时间过度冗长。本试验完成了具有杂化纳米粒子(MOS2 - Fe3O4)的组合的更好的PCM凝固率和在三重手管储存中的新鳍片构型。考虑到自然传导的计算模型并验证了以前的实验数据。计算了在整个凝固过程中施加各种纳米颗粒体积分数,辐射参数和形状因子对液体固体界面,相变率和凝固过程时间的影响。输出证明PCM凝固通过利用上述方法变得更好。所得结果公开了辐射参数对相变率的显着影响,其对全凝固过程时间(FST)的贡献显示为74.58%。另外,最佳参数设计用于通过使用Taguchi和响应表面方法(RSM)方法来优化三重管潜热能存储系统(LHESS)系统中的完全凝固处理时间。作为一种新颖性,对FST的准确相关性具有明显的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号