首页> 外文期刊>Journal of Energy Storage >Simple and effective modification of absorbed glass mat separator through atmospheric plasma treatment for practical use in AGM lead-acid battery applications
【24h】

Simple and effective modification of absorbed glass mat separator through atmospheric plasma treatment for practical use in AGM lead-acid battery applications

机译:通过常压等离子体处理对吸附玻璃垫隔板进行简单有效的改造,以实际用于AGM铅酸电池应用

获取原文
获取原文并翻译 | 示例
           

摘要

Simple and effective modification method of commercial AGM using atmospheric plasma etching was reported for practical use in AGM battery applications. In order to enhance electrical performance and durability by improving degree of absorption of AGM for electrolyte solution, plasma-treated AGMs, AGM-X-Y, were fabricated by adjusting RF power and treatment time. In general, BET surface area and the degree of adsorption for electrolyte solution of plasma-treated AGMs increased with increase of RF power and plasma treatment time. However, on the contrary, too high RF power and long treatment time disturbed improvement of various properties, which would stem from smoothing of fiber surface and hydrophobic change by etching gas. The AGM-200-10 separator, which was treated with RF power of 200 W for 10 min, showed outstanding BET specific surface area (1.96 m(2)/g) and adsorption property (1.27 g/cc) for electrolyte. Moreover, AGM battery single cell with the AGM-200-10 separator showed much better electrical performance and durability in charge-discharge operation test under accelerated conditions, which should indicate the feasibility of the AGM-200-10 separator for practical use.
机译:据报道,使用大气等离子体蚀刻对商业AGM进行简单有效的改性方法已被实际用于AGM电池应用中。为了通过改善AGM在电解液中的吸收程度来提高电气性能和耐久性,通过调节RF功率和处理时间来制造经等离子体处理的AGM,即AGM-X-Y。通常,随着RF功率和等离子体处理时间的增加,BET表面积和经等离子体处理的AGM的电解质溶液的吸附度增加。然而,相反,太高的射频功率和较长的处理时间干扰了各种性能的改善,这可能是由于纤维表面的光滑和蚀刻气体引起的疏水性变化。用200 W的射频功率处理10分钟的AGM-200-10分离器显示出出色的BET比表面积(1.96 m(2)/ g)和对电解质的吸附性能(1.27 g / cc)。此外,带有AGM-200-10隔板的AGM电池单节电池在加速条件下的充放电操作测试中显示出更好的电气性能和耐久性,这应表明AGM-200-10隔板在实际使用中的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号