首页> 外文期刊>Journal of Energy Storage >Annulus eccentricity optimisation of a phase-change material (PCM) horizontal double-pipe thermal energy store
【24h】

Annulus eccentricity optimisation of a phase-change material (PCM) horizontal double-pipe thermal energy store

机译:相变材料(PCM)水平双管热能储存器的环偏心率优化

获取原文
获取原文并翻译 | 示例
       

摘要

The application of phase-change materials (PCMs) has received significant interest for use in thermal energy storage (TES) systems that can adjust the mismatch between the energy availability and demand. In the building sector, for example, PCMs can be used to reduce air-conditioning energy consumption by increasing the thermal capacity of the walls. However, as promising this technology may be, the poor thermal conductivity of PCMs has acted as a barrier to its commercialization, with many heat-transfer enhancement solutions proposed in the literature, such as microencapsulation or metal foam inserts, being either too costly and/or complex. The present study focuses on a low-cost and highly practical solution, in which natural-convective heat transfer is enhanced by placing the PCM in an eccentric annulus within a horizontal double-pipe TES heat exchanger. This paper presents an annulus-eccentricity optimisation study, whereby the optimal radial and tangential eccentricities are determined to minimize the charging time of a PCM thermal energy store. The storage performance of several geometrical configurations is predicted using a computational fluid dynamics (CFD) model based on the enthalpy-porosity formulation. The optimal geometrical configuration is then determined with response surface methods. The horizontal double-pipe heat exchanger studied considered here is an annulus filled with N-eicosane as the PCM for initial studies. In presence of N-eicosane, for the concentric configuration (which is the baseline case), the charging is completed at Fo = 0.64, while the charging of optimum eccentric geometries with the quickest and slowest charging is completed at Fo = 0.09 and Fo = 2.31, respectively. In addition, an investigation on the discharging performance of the studied configurations with N-eicosane shows the quickest discharge occurs with the concentric annulus case at Fo = 0.99, while the discharge time of the proposed optimum annuli is about three times this value. In other words, the proposed optimum geometry with the quickest charging time charges 7.1 times faster but also discharges similar to 3 times slower, which is ideal for a TES, especially when used as passive thermal storage systems in nearly zero-emission buildings. Complementary studies demonstrate that the proposed optimum configuration improves the TES performance also when employing other PCM types as well as various shell-to-tube diameter ratios.
机译:相变材料(PCM)的应用已引起人们极大的兴趣,可用于热能存储(TES)系统中,该系统可以调整能量可用性和需求之间的不匹配。例如,在建筑领域,PCM可用于通过增加墙壁的热容量来减少空调能耗。但是,由于这项技术前景可观,PCM的导热性差已成为其商业化的障碍,文献中提出了许多传热增强解决方案,例如微囊化或金属泡沫插入物,它们的成本太高和/或复杂。本研究的重点是低成本和高度实用的解决方案,其中通过将PCM放在水平双管TES换热器内的偏心环中来增强自然对流换热。本文提出了一种环形偏心率优化研究,从而确定了最佳的径向和切向偏心率,以最大程度地缩短PCM热能存储器的充电时间。使用基于焓-孔隙率公式的计算流体动力学(CFD)模型可以预测几种几何构型的存储性能。然后用响应面法确定最佳的几何构型。这里考虑的卧式双管换热器是一个填充有N-二十烷的环状空间,用于初始研究的PCM。在存在正二十烷的情况下,对于同心构型(这是基线情况),在Fo = 0.64时完成充电,而在Fo = 0.09和Fo =时完成带有最快和最慢充电的最佳偏心几何形状的充电。 2.31。此外,对所研究构型的正二十烷进行放电性能的研究表明,在Fo = 0.99的同心环面情况下,最快的放电发生,而建议的最佳环空的放电时间约为该值的三倍。换句话说,建议的最佳几何形状具有最快的充电时间,充电速度快7.1倍,但放电速度却慢3倍,这对于TES来说非常理想,尤其是在几乎零排放的建筑物中用作被动储热系统时。补充研究表明,当采用其他PCM类型以及各种管壳直径比时,建议的最佳配置还可以改善TES性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号