...
首页> 外文期刊>Journal of Energy Storage >Stepwise Global Sensitivity Analysis of a Physics-Based Battery Model using the Morris Method and Monte Carlo Experiments
【24h】

Stepwise Global Sensitivity Analysis of a Physics-Based Battery Model using the Morris Method and Monte Carlo Experiments

机译:基于物理的电池模型的逐步全局灵敏度分析,使用莫里斯方法和蒙特卡洛实验

获取原文
获取原文并翻译 | 示例
           

摘要

Physics-based battery models can be very complex and require careful experimental validation, but yield greater insights into the internal processes and their interactions than other cell modelling approaches. The complexity is associated with the large number of input parameters that (a) have varying degrees of identifiability, (b) can be constant or varying, and (c) appear in complex combinations with the model variables and each other. The current work studies this complexity by proposing a unique stepwise approach and purposefully addresses the computational cost associated with estimating these parameters. An initial set of 50 input parameters is reduced to only 8 highly influential parameters that can be subjected to parameter optimization. Elementary effects analysis using the Morris method is applied and demonstrates that the electrode kinetic parameters dominate the cell's voltage response as simulated by the model. These influential parameters are subjected to variance-based sensitivity analysis using Monte Carlo experiments and Jansen's formulae for variance decomposition. The first-order and total sensitivities during various modes of operation indicate that the charge transfer coefficients and effective exchange current densities have the most influence on the model error and should be subjected to further optimization. The model error's sensitivity also reveals high parameter identifiability within subsets of the experimental data and indicates that some parameter values might be valid for longer timescales rather than shorter timescales. The proposed stepwise approach can be applied to any complex physics-based cell model regardless of the cell's chemistry, format or form factor.
机译:基于物理的电池模型可能非常复杂,需要仔细的实验​​验证,但是与其他电池建模方法相比,它对内部过程及其相互作用具有更深刻的了解。复杂度与大量输入参数有关,这些输入参数具有(a)具有不同程度的可识别性,(b)可以是恒定的或变化的,并且(c)与模型变量相互之间以复杂的组合出现。当前的工作通过提出一种独特的逐步方法来研究这种复杂性,并有目的地解决与估计这些参数有关的计算成本。最初的50个输入参数集减少为仅8个可以进行参数优化的高影响力参数。应用了使用莫里斯(Morris)方法的基本效应分析,并证明了电极动力学参数主导了模型模拟的电池电压响应。使用Monte Carlo实验和Jansen公式进行方差分解,对这些有影响力的参数进行基于方差的敏感性分析。在各种工作模式下的一阶和总灵敏度表明,电荷转移系数和有效交换电流密度对模型误差的影响最大,应进行进一步优化。模型误差的敏感性还揭示了实验数据子集内的高参数可识别性,并表明某些参数值可能对较长的时标而不是较短的时标有效。所提出的逐步方法可以应用于任何基于物理的复杂细胞模型,而与细胞的化学性质,形式或形状因子无关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号