首页> 外文期刊>Journal of Energy Storage >Overview of Large-Scale Underground Energy Storage Technologies for Integration of Renewable Energies and Criteria for Reservoir Identification
【24h】

Overview of Large-Scale Underground Energy Storage Technologies for Integration of Renewable Energies and Criteria for Reservoir Identification

机译:集成可再生能源和储层识别标准的大型地下储能技术概述

获取原文
获取原文并翻译 | 示例
       

摘要

The increasing integration of renewable energies in the electricity grid is expected to contribute considerably towards the European Union goals of energy and GHG emissions reduction. However, it also brings new challenges for the grid. Large-scale energy storage can provide means for a better integration of renewable energy sources, balancing supply and demand, increasing energy security, enhancing a better management of the grid and also allowing convergence towards a low carbon economy.One way to ensure large-scale energy storage is to use the storage capacity in underground reservoirs, since geological formations have the potential to store large volumes of fluids with minimal impact to environment and society. There are several technologies which can be viable options for underground energy storage, as well as several types of underground reservoirs can be considered.The underground energy storage technologies for renewable energy integration addressed in this article are: Compressed Air Energy Storage (CAES); Underground Pumped Hydro Storage (UPHS); Underground Thermal Energy Storage (UTES); Underground Gas Storage (UGS) and Underground Hydrogen Storage (UHS), both connected to Power-to-gas (P2G) systems. For these different types of underground energy storage technologies there are several suitable geological reservoirs, namely: depleted hydrocarbon reservoirs, porous aquifers, salt formations, engineered rock caverns in host rocks and abandoned mines.Specific site screening criteria are applicable to each of these reservoir types and technologies, determining the viability of the reservoir itself, and of the technology for that site. This paper presents a review of the criteria applied to identify suitable technology-reservoir couples.
机译:电网中可再生能源的日益融合有望为实现欧盟减少能源和温室气体排放的目标做出巨大贡献。但是,这也给电网带来了新的挑战。大规模储能可为更好地整合可再生能源,平衡供需,提高能源安全性,增强对电网的更好管理以及实现向低碳经济的融合提供手段。能量存储将利用地下储层的存储容量,因为地质构造具有存储大量流体的潜力,而对环境和社会的影响最小。地下储能的可行技术有多种,可以考虑使用多种类型的地下储层。本文讨论的用于可再生能源整合的地下储能技术包括:压缩空气储能(CAES);可压缩空气储能(CAES)。地下抽水蓄能(UPHS);地下热能存储(UTES);地下储气库(UGS)和地下储氢库(UHS),均已连接到燃气发电(P2G)系统。对于这些不同类型的地下储能技术,有几种合适的地质储层,即:枯竭的碳氢化合物储层,多孔含水层,盐层,主岩和废弃矿井中的工程岩洞。每种储层类型均适用特定的现场筛选标准和技术,确定水库本身以及该地点技术的可行性。本文介绍了用于确定合适的技术-储层对的标准。

著录项

  • 来源
    《Journal of Energy Storage》 |2019年第2期|241-258|共18页
  • 作者单位

    Univ Coimbra, Sustainable Energy Syst, MIT Portugal Doctoral Program, Rua Luis Reis Santos,Polo 2, P-3030788 Coimbra, Portugal|Univ Evora, Inst Earth Sci ICT, Colegio Luis Antonio Verney, Rua Romao Ramalho 59, P-7000671 Evora, Portugal;

    Univ Evora, Inst Earth Sci, Inst Res & Adv Training,Sch Sci & Technol, Dept Geosci,Colegio Luis Antonio Verney, Rua Romao Ramalho 59, P-7000671 Evora, Portugal;

    Univ Coimbra, CeBER, Ave Dias da Silva 165, P-3004512 Coimbra, Portugal|Univ Coimbra, Fac Econ, Ave Dias da Silva 165, P-3004512 Coimbra, Portugal|INESC Coimbra, Rua Silvio Lima,Polo 2, P-3030290 Coimbra, Portugal;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Energy Storage; Underground Energy Storage Technologies; Underground Reservoirs; Reservoir Selection Criteria;

    机译:储能;地下储能技术;地下储层;储层选择标准;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号